A368785 Least of three consecutive primes p, q, r such that p + q, p + r, q + r and p + q + r all have the same number of prime divisors, counted with multiplicity.
1559, 4073, 5237, 5987, 12119, 14633, 24697, 29881, 29947, 30113, 32003, 41903, 45863, 60169, 64817, 67601, 69151, 71263, 73783, 77713, 78929, 79633, 86629, 88547, 91493, 95483, 96181, 108037, 109859, 110459, 111667, 125471, 132833, 133283, 140419, 142049, 160001, 165133, 170579, 171803, 171827, 171947
Offset: 1
Keywords
Examples
a(2) = 4073 is a term because 4073, 4079, 4091 are consecutive primes with 4073 + 4079 = 8152 = 2^3 * 1019, 4073 + 4091 = 8164 = 2^2 * 13 * 157, 4079 + 4091 = 8170 = 2 * 5 * 19 * 43, and 4073 + 4079 + 4091 = 12243 = 3 * 7 * 11 * 53 all have 4 prime divisors, counted with multiplicity.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: p:= 2: q:= 3: r:= 5: v:= numtheory:-bigomega(q+r); while count < 100 do p:= q; q:= r; r:= nextprime(r); w:= numtheory:-bigomega(q+r); if w = v and numtheory:-bigomega(p+r) = v and numtheory:-bigomega(p+q+r) = v then R:= R,p; count:= count+1; fi; v:= w; od: R;
-
Mathematica
Select[Partition[Prime[Range[16000]],3,1],Length[Union[PrimeOmega[Total/@Subsets[#,{2,3}]]]]==1&][[;;,1]] (* Harvey P. Dale, May 25 2025 *)
Comments