cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A371827 a(n) = Sum_{k=0..floor(n/3)} n^k * binomial(2*n-2*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 23, 94, 392, 1680, 7387, 33110, 150905, 698996, 3287550, 15685420, 75877427, 371994692, 1847450970, 9290557158, 47291312897, 243574276884, 1268915237141, 6683909556420, 35585631836229, 191433293140656, 1040197718292138, 5707318227692796
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[n^k Binomial[2n-2k,n-3k],{k,0,Floor[n/3]}],{n,30}]] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, n^k*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-n*x^3) * (1-x)^n).
a(n) ~ exp(4*n^(2/3)/3 + 2*n^(1/3)/9) * n^(n/3) / 3. - Vaclav Kotesovec, Apr 07 2024

A368892 a(n) = Sum_{k=0..floor(n/3)} n^(n-3*k) * binomial(n-2*k,k).

Original entry on oeis.org

1, 1, 4, 28, 264, 3200, 47521, 835569, 16974208, 391147867, 10080150040, 287244283821, 8967781893889, 304393809948904, 11160668048222588, 439582708115133751, 18509867068477014112, 829768603643818659302, 39454459640462073466945
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2 - n/2, -n/2}, -27/(4*n^3)], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, n^(n-3*k)*binomial(n-2*k, k));

Formula

a(n) = [x^n] 1/(1 - n*x - x^3).
a(n) ~ n^n. - Vaclav Kotesovec, Jan 09 2024

A368893 a(n) = Sum_{k=0..floor(n/3)} n^(n-2*k) * binomial(n-2*k,k).

Original entry on oeis.org

1, 1, 4, 30, 288, 3500, 51876, 908607, 18374656, 421492491, 10815040000, 306944040931, 9547373318400, 322972830958648, 11805432990665664, 463673398064821875, 19474259980847153152, 870954834559130974358, 41323803842611198131264
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2 - n/2, -n/2}, -27/(4*n^2)], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n-2*k, k));

Formula

a(n) = [x^n] 1/(1 - n*x - n*x^3).
a(n) ~ n^n. - Vaclav Kotesovec, Jan 09 2024

A368895 a(n) = Sum_{k=0..floor(n/3)} (-n)^k * binomial(n-2*k,k).

Original entry on oeis.org

1, 1, 1, -2, -7, -14, 13, 113, 337, 19, -2579, -10867, -9911, 71852, 431229, 741181, -2178783, -20081708, -51012467, 58414532, 1061935641, 3651310699, 1841181, -62090909433, -279070619279, -250335322449, 3913178936941, 22877592319648, 38634162528361
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (-n)^k*binomial(n-2*k, k));

Formula

a(n) = [x^n] 1/(1 - x + n*x^3).

A368898 a(n) = Sum_{k=0..floor(n/4)} n^k * binomial(n-3*k,k).

Original entry on oeis.org

1, 1, 1, 1, 5, 11, 19, 29, 105, 298, 671, 1299, 3997, 12468, 33083, 75781, 220625, 708867, 2086183, 5412778, 15756741, 51093316, 160523859, 457283931, 1365001273, 4458076176, 14608351135, 44649287452, 137979763181, 455582050840, 1536403659211, 4953147876189
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/3 - n/3, 2/3 - n/3, -n/3}, -256*n/27], {n, 0, 20}] (* Vaclav Kotesovec, Jan 09 2024 *)
  • PARI
    a(n) = sum(k=0, n\4, n^k*binomial(n-3*k, k));

Formula

a(n) = [x^n] 1/(1 - x - n*x^4).
a(n) = hypergeom([(1-n)/4, (2-n)/4, (3-n)/4, -n/4], [(1-n)/3, (2-n)/3, -n/3], -256*n/27). - Stefano Spezia, Jan 09 2024
a(n) ~ (1/4) * exp(n^(3/4)/4 + sqrt(n)/16 + 5*n^(1/4)/384) * n^(n/4) * (1 + 30643/(40960*n^(1/4)) + 3749229947/(10066329600*sqrt(n)) + 15892274778169/(137438953472000*n^(3/4))). - Vaclav Kotesovec, Jan 09 2024
Showing 1-5 of 5 results.