cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A265576 LCM-transform of EKG sequence A064413.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 2, 5, 1, 1, 1, 7, 1, 1, 1, 2, 1, 11, 1, 1, 3, 1, 5, 1, 1, 13, 1, 1, 1, 2, 17, 1, 1, 1, 19, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 29, 1, 1, 1, 31, 1, 1, 1, 2, 1, 37, 1, 1, 1, 1, 1, 1, 41, 1, 1, 3, 1, 1, 1, 43, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 53
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2016

Keywords

Comments

This is not equal to A383293(n) = A014963(A064413(n)) because the EKG-permutation doesn't satisfy the property that all prime powers should appear before any of their multiples, as, for example, A064413(4) = 6 comes before A064413(5) = 3. See comments in A368900. - Antti Karttunen, Jan 13 2024

Crossrefs

Cf. A064413, A383284 (rgs-transform), A383285 (positions of terms > 1), A383295.
Positions of records: {2} U A064423.
Other LCM-transforms are A014963, A061446, A265574, A265575, A368900 (see the last one for many other examples), A383258.
Cf. also A383293.

Programs

  • Maple
    LCMXfm:=proc(a) local L,i,n,g,b;
    L:=nops(a);
    g:=Array(1..L,0); b:=Array(1..L,0);
    b[1]:=a[1]; g[1]:=a[1];
    for n from 2 to L do g[n]:=ilcm(g[n-1],a[n]); b[n]:=g[n]/g[n-1]; od;
    lprint([seq(b[i],i=1..L)]);
    end;
    # let t1 contain the first 100 terms of A064413
    LCMXfm(t1);
  • Mathematica
    LCMXfm[a_List] := Module[{L = Length[a], b, g}, b[1] = g[1] = a[[1]]; b[] = 0; g[] = 0; Do[g[n] = LCM[g[n - 1], a[[n]]]; b[n] = g[n]/g[n - 1], {n, 2, L}]; Array[b, L]];
    ekg[1] = 1; ekg[2] = 2; ekg[n_] := ekg[n] = For[k = 1, True, k++, If[FreeQ[ Array[ekg, n - 1], k] && !CoprimeQ[k, ekg[n - 1]], Return[k]]];
    LCMXfm[Array[ekg, 100]] (* Jean-François Alcover, Dec 05 2017 *)
  • PARI
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2, len, g[n] = lcm(g[n-1], v[n]); b[n] = g[n]/g[n-1]); (b); };
    up_to = 20000;
    v265576 = LCMtransform(vector(up_to, i, A064413(i))); \\ With precomputed A064413.
    A265576(n) = v265576[n]; \\ Antti Karttunen, Apr 21 2025

Formula

a(n) = lcm {1..A064413(n)} / lcm {1..A064413(n-1)}. - Antti Karttunen, Apr 21 2025

Extensions

More terms from Antti Karttunen, Apr 21 2025

A369044 LCM-transform of bijective bit reverse (A057889).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 13, 1, 11, 1, 1, 2, 17, 1, 5, 1, 1, 1, 29, 1, 19, 1, 3, 1, 23, 1, 31, 2, 1, 1, 7, 1, 41, 1, 1, 1, 37, 1, 53, 1, 1, 1, 61, 1, 1, 1, 1, 1, 43, 1, 59, 1, 1, 1, 1, 1, 47, 1, 1, 2, 1, 1, 97, 1, 3, 1, 113, 1, 73, 1, 1, 1, 89, 1, 11, 1, 1, 1, 101, 1, 1, 1, 1, 1, 1, 1, 109, 1, 1, 1, 5, 1, 67
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Bijective bit reverse, A057889, is a permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A057889(n)) = A000523(n), from which it immediately follows that A057889 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A057889(n)), for n >= 1.

Crossrefs

Programs

  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2));
    A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2)));
    v369044 = LCMtransform(vector(up_to,i,A057889(i)));
    A369044(n) = v369044[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A057889(n)} / lcm {1..A057889(n-1)}.
a(n) = A014963(A057889(n)). [See comments.]
For n >= 1, Product_{d|n} a(A057889(d)) = n. [Implied by above.]

A369041 LCM-transform of binary Gray code (A003188).

Original entry on oeis.org

1, 3, 2, 1, 7, 5, 2, 1, 13, 1, 1, 1, 11, 3, 2, 1, 5, 3, 1, 1, 31, 29, 1, 1, 1, 23, 1, 1, 19, 17, 2, 1, 7, 1, 1, 1, 1, 53, 1, 1, 61, 1, 1, 1, 59, 1, 1, 1, 41, 43, 1, 1, 47, 1, 1, 1, 37, 1, 1, 1, 1, 1, 2, 1, 97, 1, 1, 1, 103, 101, 1, 1, 109, 1, 1, 1, 107, 1, 1, 1, 11, 1, 1, 1, 127, 5, 1, 1, 1, 1, 1, 1, 1, 113, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Binary Gray code, A003188, is a permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A003188(n)) = A000523(n), from which it immediately follows that A003188 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A003188(n)), for n >= 1.

Crossrefs

Programs

  • Mathematica
    nn = 120; a[1] = s[1] = 1; Do[s[n] = LCM[s[n - 1], BitXor[n, Floor[n/2]] ]; a[n] = s[n]/s[n - 1], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 24 2024 *)
  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A003188(n) = bitxor(n, n>>1);
    v369041 = LCMtransform(vector(up_to,i,A003188(i)));
    A369041(n) = v369041[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A003188(n)} / lcm {1..A003188(n-1)}.
a(n) = A014963(A003188(n)). [See comments.]

A369042 LCM-transform of the inverse of binary Gray code (A006068).

Original entry on oeis.org

1, 3, 2, 7, 1, 2, 5, 1, 1, 1, 13, 2, 3, 11, 1, 31, 1, 1, 29, 1, 5, 3, 1, 2, 17, 19, 1, 23, 1, 1, 1, 1, 1, 1, 61, 1, 1, 59, 1, 1, 7, 1, 1, 1, 1, 1, 53, 2, 1, 1, 1, 1, 1, 1, 37, 47, 1, 1, 1, 1, 41, 43, 1, 127, 1, 1, 5, 1, 11, 1, 1, 1, 113, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 103, 1, 1, 101, 1, 1, 1, 109, 1, 1, 107, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Inverse of Binary Gray code, A006068, is a permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A006068(n)) = A000523(n), from which it immediately follows that A006068 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A006068(n)), for n >= 1.

Crossrefs

Programs

  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A006068(n)= { my(s=1, ns); while(1, ns = n >> s; if(0==ns, break()); n = bitxor(n, ns); s <<= 1; ); return (n); } \\ From A006068
    v369042 = LCMtransform(vector(up_to,i,A006068(i)));
    A369042(n) = v369042[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A006068(n)} / lcm {1..A006068(n-1)}.
a(n) = A014963(A006068(n)). [See comments.]

A369043 LCM-transform of Blue code (A193231).

Original entry on oeis.org

1, 3, 2, 5, 2, 1, 7, 1, 1, 1, 13, 1, 11, 3, 2, 17, 2, 1, 19, 1, 1, 23, 1, 1, 31, 29, 1, 3, 1, 1, 5, 1, 1, 1, 7, 1, 1, 53, 1, 1, 61, 1, 1, 1, 1, 1, 59, 1, 1, 1, 2, 1, 1, 1, 37, 1, 1, 1, 47, 1, 41, 43, 1, 1, 1, 1, 1, 1, 3, 83, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 71, 1, 1, 2, 1, 67, 1, 1, 1, 73, 1, 79, 1, 1, 1, 103, 101
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Blue code, A193231, is a self-inverse permutation related to the binary expansion of n that keeps all the numbers of range [2^k, 2^(1+k)[ in the same range, i.e., for all n >= 1, A000523(A193231(n)) = A000523(n), from which it immediately follows that A193231 has the property S mentioned in the comments of A368900, and therefore this sequence is equal to A014963(A193231(n)), for n >= 1.

Crossrefs

Programs

  • PARI
    up_to = 65537; \\ Checked up to 2^17;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) };
    v369043 = LCMtransform(vector(up_to,i,A193231(i)));
    A369043(n) = v369043[n];
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };

Formula

a(n) = lcm {1..A193231(n)} / lcm {1..A193231(n-1)}.
a(n) = A014963(A193231(n)). [See comments.]
For n >= 1, Product_{d|n} a(A193231(d)) = n. [Implied by above.]

A369028 Exponential of Mangoldt function permuted by A253563.

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 3, 5, 2, 1, 1, 1, 3, 1, 5, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 7, 11, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 11, 13, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253563 (when viewed as an offset-1 sequence), because A253563 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253563(n)).
a(1) = 0, and for n > 0, a(n) = lcm {1..A253563(n)} / lcm {1..A253563(n-1)}. [See comments]

A369029 Exponential of Mangoldt function permuted by A253565.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 1, 2, 7, 5, 1, 3, 1, 1, 1, 2, 11, 7, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 13, 11, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 17, 13, 1, 11, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A253565 (when viewed as an offset-1 sequence), because A253565 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A253565(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A253565(n)} / lcm {1..A253565(n-1)}. [LCM-transform, see comments]

A369030 Exponential of Mangoldt function permuted by A163511 ("Doudna-permutation mirrored").

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 1, 5, 2, 3, 1, 5, 1, 1, 1, 7, 2, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 11, 2, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 2, 3, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A163511 (when viewed as an offset-1 sequence), because A163511 has the S-property explained in the comments of A368900, from which this can be obtained by permuting with A054429.

Crossrefs

Programs

  • PARI
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A369030(n) = A014963(A163511(n));
    
  • PARI
    up_to = 65537;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    v369030 = LCMtransform(vector(up_to,i,A163511(i-1)));
    A369030(n) = v369030[1+n];

Formula

a(n) = A014963(A163511(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A163511(n)} / lcm {1..A163511(n-1)}. [See comments]
For n > 0, a(n) = A368900(1+A054429(n)).

Extensions

Changed offset from 1 to 0 and swapped the main and secondary definitions. - Antti Karttunen, Jan 24 2024

A369053 Exponential of Mangoldt function permuted by A243353.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 1, 5, 5, 1, 2, 3, 1, 1, 1, 7, 7, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 11, 11, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 3, 2, 1, 5, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

Also LCM-transform of A243353 (when viewed as an offset-1 sequence), because A243353 has the S-property explained in the comments of A368900.

Crossrefs

Programs

Formula

a(n) = A014963(A243353(n)).
a(0) = 1, and for n > 0, a(n) = lcm {1..A243353(n)} / lcm {1..A243353(n-1)}. [See comments]

A369031 LCM-transform of permutation induced by partition conjugation via Heinz numbers (A122111).

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 5, 3, 1, 2, 1, 2, 1, 1, 7, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 5, 1, 2, 1, 2, 11, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 13, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

See discussion at A368900.
From the reduced formula it follows that for all i, j >= 1: A101296(i) = A101296(j) => a(i) = a(j), that is, the value of each a(n) is completely determined by its prime signature. Note that the same does not hold for related A369032.

Crossrefs

Programs

  • PARI
    up_to = 2^18;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    v369031 = LCMtransform(vector(up_to,i,A122111(i)));
    A369031(n) = v369031[n];
    
  • PARI
    A369031(n) = if(isprime(n),2, my(e=ispower(n,,&n)); if(e && isprime(n), prime(e), 1));

Formula

a(n) = lcm {1..A122111(n)} / lcm {1..A122111(n-1)}.
a(n) = A014963(A122111(n)). [A122111 satisfies the property S given in A368900]
If n = p^k, p prime, k >= 1, then a(n) = A000040(k), otherwise a(n) = 1.
Showing 1-10 of 20 results. Next