A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.
1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 1 1 9 9 1 15 80 90 24 1 252 1050 1200 450 50 1 5005 18018 20475 9100 1575 90 1 The loop-graphs counted in row n = 3 (loops shown as singletons): {12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3} {1}{12}{23} {1}{2}{13} {1}{13}{23} {1}{2}{23} {2}{12}{13} {1}{3}{12} {2}{12}{23} {1}{3}{13} {2}{13}{23} {1}{3}{23} {3}{12}{13} {2}{3}{12} {3}{12}{23} {2}{3}{13} {3}{13}{23} {2}{3}{23}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}] T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
-
PARI
T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024
Formula
T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).