cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324201 a(n) = A062457(A000043(n)) = prime(A000043(n))^A000043(n), where A000043 gives the exponent of the n-th Mersenne prime.

Original entry on oeis.org

9, 125, 161051, 410338673, 925103102315013629321, 1271991467017507741703714391419, 49593099428404263766544428188098203, 165163983801975082169196428118414326197216835208154294976154161023
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

If there are no odd perfect numbers, then the terms give all solutions n > 1 to A323244(n) = 0.
Conversely, if these are all numbers k > 1 that satisfy A323244(k) = 0 (which can be proved if one can show, for example, that no number in A007916 can satisfy the equation), then no odd perfect numbers exist. See also A336700. - Antti Karttunen, Jan 12 2024

Crossrefs

Subsequence of A001597.
Cf. also A336700, A368989.

Programs

  • Mathematica
    Prime[#]^#&/@MersennePrimeExponent[Range[8]] (* Harvey P. Dale, Mar 15 2024 *)

Formula

a(n) = A062457(A000043(n)).
A323244(a(n)) = 0.
a(n) = A005940(1+A000396(n)). [Provided no odd perfect numbers exist]

A368698 a(n) is the smallest positive k such that A005940(1+n) divides the oblong number k*(k+1).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 8, 7, 6, 4, 5, 3, 24, 8, 26, 15, 10, 6, 6, 4, 14, 5, 9, 8, 48, 24, 24, 8, 124, 26, 80, 31, 12, 10, 11, 7, 10, 6, 27, 15, 21, 14, 14, 15, 49, 9, 54, 15, 120, 48, 48, 24, 49, 24, 99, 8, 342, 124, 125, 27, 624, 80, 242, 63, 16, 12, 12, 11, 25, 11, 44, 7, 13, 10, 44, 20, 99, 27, 27, 15, 65, 21, 21, 20
Offset: 0

Views

Author

Antti Karttunen, Jan 11 2024

Keywords

Crossrefs

Cf. A002378, A005940, A344005, A368699, A368700, A368693 (rgs-transform), A368988 (positions of records), A368989 (values of records).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A344005(n) = { my(m=1); while((m*(m+1)) % n, m++); m; };
    A368698(n) = A344005(A005940(1+n));

Formula

a(n) = A344005(A005940(1+n)).
For n >= 1, a(2^n) = A006093(n), a(A000225(n)) = A000225(n).

A368988 Positions of records in A368698.

Original entry on oeis.org

0, 2, 3, 4, 6, 12, 14, 24, 28, 56, 60, 112, 120, 124, 240, 248, 480, 488, 496, 992, 1000, 1008, 2016, 2032, 4016, 4024, 4064, 4080, 8112, 8128, 8160, 8176, 16312, 16320, 16352, 16368
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

The even perfect numbers seem to occur here, as via Doudna-mapping they encode terms of A324201, which in turn have large values in A344005.

Crossrefs

Cf. A000396, A324201, A344005, A368698, A368989 (values of records).
Showing 1-3 of 3 results.