cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369054 Number of representations of n as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Comments

Number of solutions to n = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes (not all necessarily distinct, A046316).
See the conjecture in A369055.

Examples

			a(27) = 1 as 27 can be expressed in exactly one way in the form (p*q + p*r + q*r), with p, q, r all being 3 in this case, as 27 = (3*3 + 3*3 + 3*3).
a(311) = 5 as 311 = (3*5 + 3*37 + 5*37) = (3*7 + 3*29 + 7*29) = (3*13 + 3*17 + 13*17) = (5*7 + 5*23 + 7*23) = (7*11 + 7*13 + 11*13). Expressed in the terms of arithmetic derivatives, of the A099302(311) = 8 antiderivatives of 311 [366, 430, 494, 555, 609, 663, 805, 1001], only the last five are products of three odd primes: 555 = 3*5*37, 609 = 3*7*29, 663 = 3*13*17, 805 = 5*7*23, 1001 = 7 * 11 * 13.
		

Crossrefs

Cf. A369055 [quadrisection, a(4n-1)], and its trisections A369460 [= a((12*n)-9)], A369461 [= a((12*n)-5)], A369462 [= a((12*n)-1)].
Cf. A369251 (positions of terms > 0), A369464 (positions of 0's).
Cf. A369063 (positions of records), A369064 (values of records).
Cf. A369241 [= a(2^n - 1)], A369242 [= a(n!-1)], A369245 [= a(A006862(n))], A369247 [= a(3*A057588(n))].

Programs

  • PARI
    \\ Use this for building up a list up to a certain n. We iterate over weakly increasing triplets of odd primes:
    A369054list(up_to) = { my(v = [3,3,3], ip = #v, d, u = vector(up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > up_to, ip--, ip = #v; u[d]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])); };
    v369054 = A369054list(100001);
    A369054(n) = if(!n,n,v369054[n]);
    
  • PARI
    \\ Use this for computing the value of arbitrary n. We iterate over weakly increasing pairs of odd primes:
    A369054(n) = if(3!=(n%4),0, my(v = [3,3], ip = #v, r, c=0); while(1, r = (n-(v[1]*v[2])) / (v[1]+v[2]); if(r < v[2], ip--, ip = #v; if(1==denominator(r) && isprime(r),c++)); if(!ip, return(c)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])));

Formula

a(n) = Sum_{i=1..A002620(n)} A369058(i)*[A003415(i)==n], where [ ] is the Iverson bracket.
For n >= 2, a(n) <= A099302(n).

A369055 Number of representations of 4n-1 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 0, 1, 1, 2, 2, 1, 1, 0, 1, 2, 0, 0, 0, 3, 0, 1, 0, 2, 1, 2, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 5, 2, 0, 0, 2, 1, 1, 0, 2, 0, 1, 1, 2, 2, 0, 2, 1, 0, 2, 0, 3, 1, 0, 0, 4, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 20 2024

Keywords

Comments

Number of solutions to 4n-1 = x', where x' is the arithmetic derivative of x (A003415), and x is a product of three odd primes, A046316.
The number of 0's in range [1..10^n], for n=1..7 are: 8, 46, 288, 2348, 21330, 206355, 2079925, etc.
Goldbach's conjecture can be expressed by claiming that each even number > 4 is an arithmetic derivative of an odd semiprime, as (p*q)' = p+q, where p and q are odd primes. One way to extend Goldbach's conjecture to three primes involves applying the arithmetic derivative to all possible products of three odd primes (A046316) as: (p*q*r)' = (p*q) + (p*r) + (q*r), and asking, "Onto which subset of natural numbers does this map surjectively?" Clearly, the above formula can only produce numbers of the form 4m+3, and furthermore, an analysis at A369252 shows that the trisections of this sequence have quite different expected values, being on average the highest in the trisection A369462, which gives the number of representations for the numbers of the form 12m+11. This motivates a new kind of Goldbach-3 conjecture: "All numbers of the form 12*m-1, with m large enough, have at least one representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r." Furthermore, empirical data for sequence A369463 suggests that "large enough" in this case might well be 4224080, as 1+(12*4224079) = 50688949 = A369463(285), with the next term of A369463 so far unknown. Similar conjectures can be envisaged for the arithmetic derivatives of products of four or more primes. - Antti Karttunen, Jan 25 2024

Examples

			a(7) = 1 because 4*7 - 1 = 27, which can be represented as a sum of the form (p*q) + (p*r) + (q*r), with all three primes p, q and r = 3.
a(19) = 2 because 4*19 - 1 = 75, which can be represented as a sum of the form (p*q) + (p*r) + (q*r) in two ways, with p=3, q=3 and r=11, or with p = q = r = 5.
a(9999995) = 0 because (4*9999995)-1 = 39999979, which cannot be expressed as a sum (p*q) + (p*r) + (q*r) for any three odd primes p, q and r, whether distinct or not.
		

Crossrefs

Cf. A369460, A369461, A369462 (trisections), A369450, A369451, A369452 (and their partial sums).
Cf. also A351029, A369239.

Programs

  • PARI
    \\ We iterate over weakly increasing triplets of odd primes:
    A369055list(up_to) = { my(v = [3,3,3], ip = #v, d, u = vector(up_to), lim = -1+(4*up_to)); while(1, d = ((v[1]*v[2]) + (v[1]*v[3]) + (v[2]*v[3])); if(d > lim, ip--, ip = #v; u[(d+1)/4]++); if(!ip, return(u)); v[ip] = nextprime(1+v[ip]); for(i=1+ip,#v,v[i]=v[i-1])); };
    v369055 = A369055list(100001);
    A369055(n) = v369055[n];

Formula

a(n) = A369054(4*n-1).
a(n) = Sum_{i=1..A002620(4*n-1)} A369058(i)*[A003415(i)==4*n-1], where [ ] is the Iverson bracket.

A369252 Arithmetic derivative applied to the numbers of the form p*q*r where p,q,r are (not necessarily distinct) odd primes.

Original entry on oeis.org

27, 39, 51, 55, 75, 71, 87, 75, 91, 111, 103, 123, 95, 119, 147, 131, 119, 151, 183, 151, 135, 195, 167, 155, 231, 147, 199, 191, 187, 255, 167, 267, 211, 291, 195, 215, 247, 191, 263, 215, 327, 251, 247, 363, 203, 375, 311, 271, 255, 239, 411, 231, 311, 343, 299, 231, 435, 359, 331, 447, 311, 263, 391, 483, 263
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Comments

The table showing the possible modulo 3 combinations for p, q, r and the sum ((p*q) + (p*r) + (q*r)):
| p | q | r | sum ((p*q) + (p*r) + (q*r)) (mod 3)
--+------+------+------+----------------------------------------
| 0 | 0 | 0 | 0, p=q=r=3, sum is 27.
--+------+------+------+----------------------------------------
| 0 | 0 | +/-1 | 0, p=q=3, r > 3.
--+------+------+------+----------------------------------------
| 0 | +1 | +1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | -1 | +1
--+------+------+------+----------------------------------------
| 0 | -1 | +1 | -1
--+------+------+------+----------------------------------------
| 0 | +1 | -1 | -1
--+------+------+------+----------------------------------------
| +1 | +1 | +1 | 0
--+------+------+------+----------------------------------------
| -1 | -1 | -1 | 0
--+------+------+------+----------------------------------------
| -1 | +1 | +1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
| +1 | -1 | -1 | -1, regardless of the order, thus x3.
--+------+------+------+----------------------------------------
Notably a(n) is a multiple of 3 only when A046316(n) is either a multiple of 9, or all primes p, q and r are either == +1 (mod 3) or all are == -1 (mod 3), and the case a(n) == +1 (mod 3) is only possible when A046316(n) is a multiple of 3, but not of 9, and furthermore, it is required that r == q (mod 3). See how these combinations affects sequences like A369241, A369245, A369450, A369451, A369452.
For n=1..9 the number of terms of the form 3k, 3k+1 and 3k+2 in range [1..10^n-1] are:
6, 2, 1,
39, 22, 38,
291, 209, 499,
2527, 1884, 5588,
23527, 17020, 59452,
227297, 156240, 616462,
2232681, 1453030, 6314288,
22119496, 13661893, 64218610,
220098425, 129624002, 650277572.
It seems that 3k+2 terms are slowly gaining at the expense of 3k+1 terms when n grows, while the density of the multiples of 3 might converge towards a limit.

Crossrefs

Cf. A369251 (same sequence sorted into ascending order, with duplicates removed).
Cf. A369464 (numbers that do not occur in this sequence).
Cf. also the trisections of A369055: A369460, A369461, A369462 and their partial sums A369450, A369451, A369452, also A369241, A369245.
Only terms of A004767 occur here.

Formula

a(n) = A003415(A046316(n)).

A369245 Number of representations of the n-th Euclid number, A002110(n) + 1, as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r. (Definition implies that p=3 and q > 3).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Comments

Number of representations of the n-th Euclid number, A002110(n) + 1, as a sum of the form 3*(p+q) + p*q, where p and q are odd primes.
Question: Will there be an eventual growth spurt for this sequence? Even though all solutions must be multiples of 3 (but not of 9), because A006862(n) == 1 (mod 3), for n > 1, and the solutions belong to a set listed by A369461.
Similar sequence A369242 grows more vigorously because A033312(n) == -1 (mod 3) for n >= 3, thus allowing non-multiples of 3 as solutions. See comments in A369252.

Examples

			a(4) = 1 as there exists a natural number 399 = 3 * 7 * 19, whose arithmetic derivative (indicated with 399', see A003415) is computed as ((3*7) + (3*19) + (7*19)) = 211 = 1 + prime(4)# = A006862(4), and because 399 is the unique term in A046316 that satisfies the condition.
a(17) >= 1 because there exists (at least one) solution k = 4903038892893242229501 = 3 * 17 * 96138017507710631951 with A003415(k) = 1+A002110(17).
For other cases, see examples in A369246.
		

Crossrefs

Cf. also A116979, A369000, A369239 for similar counts, also A369241, A369242 and A369247.

Programs

  • PARI
    \\ Needs also program from A369054.
    A002110(n) = prod(i=1,n,prime(i));
    A369245(n) = A369054(A002110(n)+1);
    
  • PARI
    \\ Optimized version of above, employs the fact that solutions must all be multiples of 3. Outputs also terms for A369246.
    search_for_3k1_cases(n) = if(3!=(n%4),0, my(p = 5, q, c=0); while(1, q = (n-(3*p)) / (3+p); if(q < p, return(c), if(1==denominator(q) && isprime(q),c++; write("b369246_by_search_order_to.txt", n, " ", 3*p*q))); p = nextprime(1+p)));
    A002110(n) = prod(i=1,n,prime(i));
    A369245(n) = search_for_3k1_cases(A002110(n)+1);

Formula

a(n) = A369054(A006862(n)).

A369242 Number of representations of n! - 1 as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 3, 11, 24, 53, 176, 339, 1510, 2573
Offset: 0

Views

Author

Antti Karttunen, Jan 21 2024

Keywords

Crossrefs

Cf. also A369241, A369245.

Programs

Formula

a(n) = A369054(A033312(n)).
For n >= 4, a(n) = A369055(n!/4).
Showing 1-5 of 5 results.