cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369496 a(n) = [x^(n*(n+1)/2)] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 20, 47, 104, 246, 607, 1496, 3751, 9579, 24720, 64327, 168932, 446830, 1188030, 3177198, 8541152, 23063100, 62550085, 170337684, 465564180, 1276779917, 3512617527, 9692054125, 26815357935, 74381739478, 206820705565, 576371104028
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
         `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+
            b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n (n + 1)/2], {n, 0, 32}]

A369495 a(n) = [x^n] Product_{k=1..n} (x^(k*(k+1)/2) + 1 + 1/x^(k*(k+1)/2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 11, 25, 56, 129, 313, 748, 1831, 4584, 11581, 29555, 76398, 199191, 522746, 1382158, 3676072, 9828631, 26412174, 71310248, 193346941, 526302232, 1437895915, 3941671019, 10839118898, 29893768219, 82671240995, 229213877639, 637049969282
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0,
         `if`(n=m, 1, b(abs(n-i*(i+1)/2), i-1)+b(n, i-1)+
            b(n+i*(i+1)/2, i-1))))((2+(3+i)*i)*i/6)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    Table[Coefficient[Product[x^(k (k + 1)/2) + 1 + 1/x^(k (k + 1)/2), {k, 1, n}], x, n], {n, 0, 32}]
Showing 1-2 of 2 results.