A369432 Number of Dyck excursions with catastrophes from (0,0) to (n,0).
1, 1, 3, 6, 16, 37, 95, 230, 582, 1434, 3606, 8952, 22446, 55917, 140007, 349374, 874150, 2183230, 5460506, 13643972, 34118328, 85270626, 213205958, 532926716, 1332420796, 3330739972, 8327221380, 20816939100, 52043684970, 130105200765, 325267849335, 813155081070
Offset: 0
Examples
For n = 3 the a(3) = 6 solutions are UUC, UDC, UCC, CUD, CUC, CCC. For n = 4 the a(4) = 16 solutions are UUUC, UUDD, UUDC, UUCC, UDUD, UDUC, UDCC, UCUD, UCUC, UCCC, CUUC, CUDC, CUCC, CCUD, CCUC, CCCC.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2514
- Cyril Banderier and Michael Wallner, Lattice paths with catastrophes, arXiv:1707.01931 [math.CO], 2017, p.7.
Crossrefs
Programs
-
Maple
u1 := solve(1 - z*(1/u + u), u)[2]; M := (1 - u1)/(1 - 2*z); E := u1/z; F := E/(-M*z + 1); series(F, z, 33); # second Maple program: b:= proc(x, y) option remember; `if`(x=0, `if`(y=0, 1, 0), b(x-1, 0)+`if`(y>0, b(x-1, y-1), 0)+b(x-1, y+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..31); # Alois P. Heinz, Jan 23 2024
-
Mathematica
b[x_, y_] := b[x, y] = If[x == 0, If[y == 0, 1, 0], b[x-1, 0] + If[y > 0, b[x-1, y-1], 0] + b[x-1, y+1]]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 24 2025, after Alois P. Heinz *)
-
PARI
my(N=44,z='z+O('z^N)); Vec((1 - sqrt(1 -4*z^2))*(2*z - 1)/(z^2*(6*z - 3 + sqrt(1 - 4*z^2))))
Formula
G.f.: (1 - sqrt(1 - 4*z^2))*(2*z - 1)/(z^2*(6*z - 3 + sqrt(1 - 4*z^2))).
a(n) ~ 3/8*(5/2)^n.
Comments