cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369440 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x^2)^2) ).

Original entry on oeis.org

1, 1, 3, 9, 30, 107, 396, 1513, 5915, 23554, 95202, 389555, 1610588, 6717816, 28234064, 119452553, 508330809, 2174393331, 9343913933, 40319400738, 174630125428, 758916134002, 3308320668768, 14462616815619, 63388694309005, 278492994845776, 1226241871745376
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(n+1,n-2*k).

A369478 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x+x^2)^2) ).

Original entry on oeis.org

1, 4, 24, 170, 1320, 10868, 93197, 823484, 7445184, 68545882, 640446224, 6057249180, 57878746750, 557903174040, 5418441862824, 52971933934834, 520869559359424, 5147999004530720, 51113415228327827, 509583784051748692, 5099262428810825568
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1+x+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(4*n-k+4,n-2*k).

A370195 Coefficient of x^n in the expansion of ( (1+x)^2 * (1+x^2)^2 )^n.

Original entry on oeis.org

1, 2, 10, 56, 322, 1902, 11440, 69680, 428418, 2653292, 16527910, 103443144, 649964176, 4097464490, 25904239560, 164168677056, 1042651014018, 6634470805556, 42286359318364, 269925368946896, 1725325033144622, 11041442722096094, 70739175615642016
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1+x)^2*(1+x^2)^2)^n,{x,0,n}]; Array[a,23,0] (* Stefano Spezia, Apr 30 2024 *)
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n\s, binomial(t*n, k)*binomial(u*n, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(2*n,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / ((1+x)^2 * (1+x^2)^2) ). See A369441.

A369594 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * (1+x^3)^3) ).

Original entry on oeis.org

1, 3, 12, 58, 318, 1887, 11772, 75969, 502554, 3389056, 23211312, 161015058, 1128976523, 7988381001, 56968671948, 409046328954, 2954644519365, 21455293440345, 156534285598068, 1146881543952792, 8434926025730955, 62250461094154372, 460859182211975184
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2024

Keywords

Crossrefs

Cf. A369441.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3*(1+x^3)^3))/x)
    
  • PARI
    a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(3*n+3,k) * binomial(3*n+3,n-3*k).
Showing 1-4 of 4 results.