cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A369257 a(n) = number of odd divisors of n that have an even number of prime factors with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2024

Keywords

Examples

			Of the eight odd divisors of 105, the four divisors 1, 15, 21, 35 all have an even number of prime factors (A001222(d) is even), therefore a(105) = 4.
		

Crossrefs

Inverse Möbius transform of A353557.
Cf. A000265, A001227, A038548, A046337, A053866, A353557, A369258, A369454 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} A353557(d).
a(n) = A001227(n) - A369258(n).
a(n) = a(2*n) = a(A000265(n)).
For n >= 1, a(2n-1) = A038548(2n-1); for n > 1, a(2n) < A038548(2n).
From Antti Karttunen, Jan 27 2024: (Start)
a(n) = A038548(A000265(n)).
a(n) = (A001227(n)+A053866(n))/2.
Dirichlet g.f.: (zeta(s)^2*(1-2^-s) + zeta(2s)*(1+2^-s)) / 2.
(End)

A378526 Dirichlet inverse of A378548, where A378548 is the sum of divisors d of n such that n/d is odd with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, -1, 10, -11, 0, -13, 14, 14, 0, -17, 2, -19, 0, 20, 22, -23, 0, -1, 26, 3, 0, -29, -28, -31, 0, 32, 34, 34, 0, -37, 38, 38, 0, -41, -40, -43, 0, 8, 46, -47, 0, -1, 2, 50, 0, -53, -6, 54, 0, 56, 58, -59, 0, -61, 62, 10, 0, 64, -64, -67, 0, 68, -68, -71, 0, -73, 74, 8, 0, 76, -76, -79, 0, 0, 82
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2024

Keywords

Comments

Agrees with A378525 on all odd n, and also on some even n: 2, 16, 32, 64, 96, 128, 160, 192, ...

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA378548(n/d) * a(d).
a(n) = Sum_{d|n} A023900(d)*A369454(n/d).
a(n) = Sum_{d|n} A055615(d)*A358777(n/d).

A369453 Dirichlet inverse of A038548, where A038548 is the number of divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, 1, -1, 0, -1, 2, -1, 0, 0, 0, -1, 2, -1, 2, 0, 0, -1, 0, -1, 0, 1, 2, -1, 2, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 2, -1, 2, 2, 0, -1, -1, -1, 2, 0, 2, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 2, 0, 0, 2, -1, 2, 0, 2, -1, -3, -1, 0, 2, 2, 0, 2, -1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, -1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 27 2024

Keywords

Crossrefs

Cf. A038548.
Cf. also A359763, A369454.

Programs

  • PARI
    A038548(n) = if( n<1, 0, sumdiv(n, d, d*d <= n))
    memoA369453 = Map();
    A369453(n) = if(1==n,1,my(v); if(mapisdefined(memoA369453,n,&v), v, v = -sumdiv(n,d,if(dA038548(n/d)*A369453(d),0)); mapput(memoA369453,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA038548(n/d) * a(d).
Dirichlet g.f.: 2/(zeta(s)^2 + zeta(2*s)).
Showing 1-3 of 3 results.