cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370622 Coefficient of x^n in the expansion of ( (1-x)^2 / (1-x-x^2)^3 )^n.

Original entry on oeis.org

1, 1, 9, 46, 293, 1806, 11538, 74173, 482157, 3154645, 20762014, 137270376, 911111522, 6067104434, 40514133081, 271195540971, 1819188150365, 12225956834430, 82301499780885, 554850642658483, 3745615502285478, 25315915432984852, 171292993893095996
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1-x)^2/(1-x-x^2)^3)^n,{x,0,n}]; Array[a,23,0] (* Stefano Spezia, May 01 2024 *)
  • PARI
    a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(2*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x)^2 ). See A369488.

A369487 Expansion of (1/x) * Series_Reversion( x / (1-x) * (1-x-x^2)^3 ).

Original entry on oeis.org

1, 2, 10, 57, 365, 2492, 17797, 131290, 992704, 7652558, 59918667, 475213662, 3809620760, 30820493162, 251309225465, 2063207320841, 17040385542611, 141487339935740, 1180337222858348, 9888553030497869, 83160409524964381, 701782096849536054
Offset: 0

Views

Author

Seiichi Manyama, Jan 24 2024

Keywords

Crossrefs

Cf. A369488.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)*(1-x-x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(3*n-k+1,n-2*k).
Showing 1-2 of 2 results.