cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370621 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2)^3 )^n.

Original entry on oeis.org

1, 2, 16, 119, 948, 7732, 64231, 540311, 4588076, 39244106, 337624066, 2918384229, 25325306031, 220497804256, 1925231880973, 16850975055139, 147807248526268, 1298926641563548, 11434042768577866, 100800817171002817, 889839745865544598
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[((1-x)/(1-x-x^2)^3)^n,{x,0,n}]; Array[a,21,0] (* Stefano Spezia, May 01 2024 *)
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2)^3 / (1-x) ). See A369487.

A369488 Expansion of (1/x) * Series_Reversion( x / (1-x)^2 * (1-x-x^2)^3 ).

Original entry on oeis.org

1, 1, 5, 20, 101, 522, 2860, 16115, 93200, 549286, 3288633, 19942666, 122243210, 756188245, 4714629930, 29595888020, 186903732003, 1186606564605, 7569137651545, 48486925091800, 311788811682494, 2011863788481296, 13022795014568290, 84539592912435990
Offset: 0

Views

Author

Seiichi Manyama, Jan 24 2024

Keywords

Crossrefs

Cf. A369487.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1-x)^2*(1-x-x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t-u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+k+2,k) * binomial(2*n-k,n-2*k).
Showing 1-2 of 2 results.