A003063 a(n) = 3^(n-1) - 2^n.
-1, -1, 1, 11, 49, 179, 601, 1931, 6049, 18659, 57001, 173051, 523249, 1577939, 4750201, 14283371, 42915649, 128878019, 386896201, 1161212891, 3484687249, 10456158899, 31372671001, 94126401611, 282395982049, 847221500579, 2541731610601, 7625329049531, 22876255584049
Offset: 1
Examples
a(3) = 1 because 3^2 - 2^3 = 9 - 8 = 1. a(4) = 11 because 3^3 - 2^4 = 27 - 16 = 11. a(5) = 49 because 3^4 - 2^5 = 81 - 32 = 49.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- D. Knuth, Letter to N. J. A. Sloane, date unknown
- Index entries for linear recurrences with constant coefficients, signature (5,-6).
Crossrefs
Programs
-
Magma
[3^(n-1) -2^n: n in [1..30]]; // G. C. Greubel, Nov 03 2022
-
Mathematica
Table[3^(n-1) - 2^n, {n, 25}] (* Alonso del Arte, Feb 01 2013 *) LinearRecurrence[{5,-6},{-1,-1},30] (* Harvey P. Dale, Feb 02 2015 *)
-
PARI
a(n)=3^(n-1)-2^n \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[3^(n-1) -2^n for n in range(1,31)] # G. C. Greubel, Nov 03 2022
Formula
Let b(n) = 2*(3/2)^n - 1. Then a(n) = -b(1-n)*3^(n-1) for n > 0. A083313(n) = A064686(n) = b(n)*2^(n-1) for n > 0. - Michael Somos, Aug 06 2006
From Colin Barker, May 27 2013: (Start)
a(n) = 5*a(n-1) - 6*a(n-2).
G.f.: -x*(1-4*x) / ((1-2*x)*(1-3*x)). (End)
E.g.f.: (1/3)*(2 - 3*exp(2*x) + exp(3*x)). - G. C. Greubel, Nov 03 2022
Extensions
A few more terms from Alonso del Arte, Feb 01 2013
Comments