cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369732 Number of solutions to +- 1^4 +- 2^4 +- 3^4 +- ... +- n^4 = 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 21, 0, 0, 126, 0, 0, 0, 0, 1428, 0, 0, 9786, 7, 0, 0, 22, 150437, 0, 0, 836737, 1838, 0, 0, 15847, 14696425, 0, 0, 83010230, 738627, 0, 0, 6024822, 1640652994, 0, 0, 10271377082, 226033104, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Extensions

a(46)-a(60) from Alois P. Heinz, Jan 30 2024

A367416 Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2.

Original entry on oeis.org

4, 8, 1, 16, 1, 32, 0, 2, 64, 6, 128, 8, 256, 16, 4, 512, 26, 1024, 17, 10, 2048, 67, 4, 3, 4096, 100, 10, 8192, 137, 34, 6, 16384, 426, 28, 1, 32768, 661, 96, 6, 65536, 1351, 146, 16, 8, 131072, 2637, 230, 15, 262144, 3831, 258, 40, 524288, 8095, 1130, 50
Offset: 2

Views

Author

Jean-Marc Rebert, Jan 26 2024

Keywords

Comments

In the case of n = 1, there are solutions for all k. In particular, 1^k is always a k-th power and -(1^k) is a k-th power for odd k. As a formula: T(1,k) = 1 + (k mod 2). This row is not included in the sequence.

Examples

			Triangle begins:
            k = 1      2     3   4  5
  n= 2:         4;
  n= 3:         8,     1;
  n= 4:        16,     1;
  n= 5:        32,     0,    2;
  n= 6:        64,     6;
  n= 7:       128,     8;
  n= 8:       256,    16,    4;
  n= 9:       512,    26;
  n=10:      1024,    17,   10;
  n=11:      2048,    67,    4,  3;
  n=12:      4096,   100,   10;
  n=13:      8192,   137,   34,  6;
  n=14:     16384,   426,   28,  1;
  n=15:     32768,   661,   96,  6;
  n=16:     65536,  1351,  146, 16, 8;
  n=17:    131072,  2637,  230, 15;
  n=18:    262144,  3831,  258, 40;
  n=19:    524288,  8095, 1130, 50;
  n=20:   1048576, 15241,  854, 77, 6;
  ...
The T(6,2) = 6 solutions are:
  - 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2,
  - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 =  9 = 3^2,
  - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2,
  + 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 =  1 = 1^2,
  + 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 =  1 = 1^2,
  + 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 =  9 = 3^2.
		

Crossrefs

Programs

  • PARI
    f(k,u)=my(x=0,v=vector(#u));for(i=1,#u,u[i]=if(u[i]==0,-1,1);v[i]=i^k);u*v~
    is(k,u)=my(x=f(k,u));ispower(x,k)
    T(n,k)=my(u=vector(n,i,[0,1]),nbsol=0);if(k%2==1,u[1]=[1,1]);forvec(X=u,if(is(k,X),nbsol++));if(k%2==1,nbsol*=2);nbsol
Showing 1-2 of 2 results.