A369647 Nonzero numbers k in A341518 for which A051903(k) attains novel values.
1, 2, 9, 16, 108, 9024, 2990880, 995336192, 1805726080
Offset: 1
Examples
k factorization max.exp k' A049345(k') 1 0, 0, 0 2 = 2^1, 1, 1, 1 9 = 3^2, 2, 6, 100 16 = 2^4, 4, 32, 1010 108 = 2^2 * 3^3, 3, 216, 10100 9024 = 2^6 * 3 * 47, 6, 30272, 1011010 2990880 = 2^5 * 3^2 * 5 * 31 * 67, 5, 10210416, 110010100 995336192 = 2^13 * 121501, 13, 6469693440, 10000010000 1805726080 = 2^7 * 5 * 157 * 17971, 7, 6692788416, 11000100100. See also the examples at A351073 and A369649.
Crossrefs
Programs
-
PARI
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); A051903(n) = if((1==n),0,vecmax(factor(n)[, 2])); ismaxprimobasedigit_at_most(n,k) = { my(s=0, p=2); while(n, if((n%p)>k, return(0)); n = n\p; p = nextprime(1+p)); (1); }; isA341518(n) = ismaxprimobasedigit_at_most(A003415(n),1); m=Map(); for(n=1,2990880,if(isA341518(n),e=A051903(n);if(!mapisdefined(m,e),mapput(m,e,n);print1(n,", "))));
Comments