cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A369735 Number of solutions to 1^3*k_1 + 2^3*k_2 + ... + n^3*k_n = 1, where k_i are from {-1,0,1}, i=1..n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 4, 6, 15, 28, 56, 125, 287, 646, 1540, 3625, 8484, 21167, 51458, 126342, 323126, 811538, 2052501, 5339265, 13751212, 35589866, 94032931, 246791641, 650227636, 1739032299, 4630165425, 12373805281, 33429284691, 90073865814, 243460560324
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>(i*(i+1)/2)^2, 0,
         `if`(i=0, 1, b(n, i-1)+b(n+i^3, i-1)+b(abs(n-i^3), i-1)))
        end:
    a:= n-> b(1, n):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 30 2024
  • Mathematica
    Table[Coefficient[Product[(x^(k^3) + 1 + 1/x^(k^3)), {k, 1, n}], x, 1], {n, 0, 33}]

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^3) + 1 + 1/x^(k^3)).