cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369808 Expansion of 1/(1 - x^5/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 7, 28, 84, 210, 463, 938, 1821, 3563, 7385, 16577, 39529, 96315, 232393, 546806, 1251461, 2801015, 6189683, 13647361, 30281870, 67918782, 153939843, 351309676, 803438125, 1834160110, 4170751775, 9443922772, 21316094357, 48041401423, 108291578580
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-5 into parts 5 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^5/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-1+2*k, n-5*k));

Formula

a(n) = A369816(7*n-5) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 22*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/5)} binomial(n-1+2*k,n-5*k).

A369813 Expansion of 1/(1 - x^2 - x^7).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 4, 6, 7, 7, 11, 9, 16, 13, 22, 20, 29, 31, 38, 47, 51, 69, 71, 98, 102, 136, 149, 187, 218, 258, 316, 360, 452, 509, 639, 727, 897, 1043, 1257, 1495, 1766, 2134, 2493, 3031, 3536, 4288, 5031, 6054, 7165, 8547, 10196, 12083, 14484, 17114, 20538, 24279, 29085, 34475
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 2 and 7.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x^2-x^7),{x,0,80}],x] (* or *) LinearRecurrence[{0,1,0,0,0,0,1},{1,0,1,0,1,0,1},80] (* Harvey P. Dale, Dec 04 2024 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(1/(1-x^2-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-5*k)%2==0)*binomial((n-5*k)/2, k));

Formula

a(n) = a(n-2) + a(n-7).
a(n) = A007380(n-7) for n >= 8.

A369814 Expansion of 1/(1 - x^3 - x^7).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 1, 1, 4, 3, 1, 5, 6, 2, 6, 10, 5, 7, 15, 11, 9, 21, 21, 14, 28, 36, 25, 37, 57, 46, 51, 85, 82, 76, 122, 139, 122, 173, 224, 204, 249, 346, 343, 371, 519, 567, 575, 768, 913, 918, 1139, 1432, 1485, 1714, 2200, 2398, 2632, 3339, 3830, 4117, 5053, 6030, 6515, 7685
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 3 and 7.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(1/(1-x^3-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-4*k)%3==0)*binomial((n-4*k)/3, k));

Formula

a(n) = a(n-3) + a(n-7).

A369815 Expansion of 1/(1 - x^4 - x^7).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 3, 1, 0, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 2, 10, 15, 7, 6, 20, 21, 9, 16, 35, 28, 15, 36, 56, 37, 31, 71, 84, 52, 67, 127, 121, 83, 138, 211, 173, 150, 265, 332, 256, 288, 476, 505, 406, 553, 808, 761, 694, 1029, 1313, 1167, 1247, 1837, 2074, 1861, 2276, 3150, 3241
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2024

Keywords

Comments

Number of compositions of n into parts 4 and 7.

Crossrefs

Programs

  • PARI
    my(N=80, x='x+O('x^N)); Vec(1/(1-x^4-x^7))
    
  • PARI
    a(n) = sum(k=0, n\7, ((n-3*k)%4==0)*binomial((n-3*k)/4, k));

Formula

a(n) = a(n-4) + a(n-7).

A373911 Number of compositions of 7*n into parts 5 and 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 794, 1732, 3553, 7116, 14501, 31078, 70607, 166922, 399315, 946121, 2197582, 4998597, 11188280, 24835641, 55117511, 123036293, 276976136, 628285812, 1431723937, 3265884047, 7436635822, 16880558594, 38196652951, 86238054374
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,22,-7,1},{1,1,1,1,1,2,9},40] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(n+2*k, n-5*k));

Formula

a(n) = A369816(7*n).
a(n) = Sum_{k=0..floor(n/5)} binomial(n+2*k,n-5*k).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 22*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: 1/(1 - x - x^5/(1 - x)^6).
Showing 1-5 of 5 results.