A369822 Number of (undirected) Eulerian cycles in the (2n)-dipyramid graph.
6, 372, 68880, 26310816, 17145457920, 17034981004800, 23977057921689600, 45400487332999680000, 111298452508871250739200, 342962787786595749642240000, 1297585985940925048243814400000, 5913686127296455213253427855360000, 31954282139197508581861513887744000000
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..100
- Eric Weisstein's World of Mathematics, Dipyramidal Graph.
- Eric Weisstein's World of Mathematics, Eulerian Cycle.
Crossrefs
Cf. A193858.
Programs
-
Mathematica
Table[n! (n - 1)! (4^n Hypergeometric2F1[1/2 - n, -n, 1, 4] - Binomial[2 n, n] - 4 Sum[2^(2 n - 2) Binomial[2 n - 2, q] Binomial[q, Floor[q/2]] Hypergeometric2F1[1, -q, 2 - 2 n, 1/2], {q, 0, 2 n - 2}]), {n, 20}] (* Eric W. Weisstein, Sep 06 2025 *)
-
PARI
\\ B(n,k) is A193858(n,k) B(m,q)={sum(j=0, q, 2^(m-j) * binomial(m-j,q-j))} a(n)={n!*(n-1)!*(2^(2*n)*sum(k=0, n, binomial(2*n, 2*k)*binomial(2*k, k)) - binomial(2*n, n) - 4*sum(q=0, 2*n-2, binomial(q, q\2) * B(2*n-2, q)))} \\ Andrew Howroyd, Feb 18 2024
Formula
a(n) = n!*(n-1)!*(2^(2*n)*Sum_{k=0..n} binomial(2*n, 2*k)*binomial(2*k, k) - binomial(2*n, n) - 4*Sum_{q=0..2*n-2} binomial(q, floor(q/2)) * A193858(2*n-2, q)). - Andrew Howroyd, Feb 18 2024
Extensions
a(5) from Max Alekseyev, Feb 17 2024
a(6) onwards from Andrew Howroyd, Feb 17 2024
a(1) prepended by Eric W. Weisstein, Sep 06 2025
Comments