A369831 a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the integers 1 to n.
1, 1, 1, 6, 23, 120, 720, 5040, 40320, 362880
Offset: 0
Links
- Wikipedia, Toeplitz Matrix.
Programs
-
Mathematica
a[n_] := CountDistinct[Table[Permanent[ToeplitzMatrix[Part[Permutations[Range[n]],i]]], {i, n!}]]; Join[{1}, Array[a,9]]
-
Python
from itertools import permutations from sympy import Matrix def A369831(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).per() for p in permutations(range(1,n+1))}) # Chai Wah Wu, Feb 12 2024
Formula
a(n) <= A000142(n).
Conjectured e.g.f.: 1/(1 - x) - x^2/2 - x^4/24.