A369832
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix using the first n prime numbers.
Original entry on oeis.org
1, 1, 2, 6, 24, 116, 717, 5033, 40301, 362845
Offset: 0
-
a[n_] := CountDistinct[Table[Det[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
-
from itertools import permutations
from sympy import primerange, prime, Matrix
def A369832(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).det() for p in permutations(primerange(prime(n)+1))}) if n else 1 # Chai Wah Wu, Feb 11 2024
A369830
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix using the integers 1 to n.
Original entry on oeis.org
1, 1, 2, 5, 22, 97, 613, 4749, 38493, 353684
Offset: 0
-
a[n_] := CountDistinct[Table[Det[ToeplitzMatrix[Part[Permutations[Range[n]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
-
from itertools import permutations
from sympy import Matrix
def A369830(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).det() for p in permutations(range(1,n+1))}) # Chai Wah Wu, Feb 12 2024
A369833
a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
Original entry on oeis.org
1, 1, 1, 6, 24, 120, 720, 5040, 40320, 362880
Offset: 0
-
a[n_] := CountDistinct[Table[Permanent[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
-
from itertools import permutations
from sympy import primerange, prime, Matrix
def A369833(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).per() for p in permutations(primerange(prime(n)+1))}) if n else 1 # Chai Wah Wu, Feb 11 2024
A369834
a(n) is the number of distinct values of the determinant of an n X n symmetric Toeplitz matrix using the integers 0 to n-1.
Original entry on oeis.org
1, 1, 2, 5, 23, 94, 614, 4628, 38243, 351024
Offset: 0
-
a[n_] := CountDistinct[Table[Det[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n - 1]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
-
from itertools import permutations
from sympy import Matrix
def A369834(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).det() for p in permutations(range(n))}) # Chai Wah Wu, Feb 11 2024
A369835
a(n) is the number of distinct values of the permanent of an n X n symmetric Toeplitz matrix using the integers 0 to n-1.
Original entry on oeis.org
1, 1, 1, 6, 23, 119, 718, 5038, 40320, 362879
Offset: 0
-
a[n_] := CountDistinct[Table[Permanent[ToeplitzMatrix[Part[Permutations[Join[{0}, Range[n - 1]]], i]]], {i, n !}]]; Join[{1}, Array[a,9]]
-
from itertools import permutations
from sympy import Matrix
def A369835(n): return len({Matrix([p[i:0:-1]+p[:n-i] for i in range(n)]).per() for p in permutations(range(n))}) # Chai Wah Wu, Feb 11 2024
Showing 1-5 of 5 results.