cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345355 a(n) = Sum_{p|n, p prime} p^omega(n/p).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 2, 3, 7, 1, 7, 1, 9, 8, 2, 1, 11, 1, 9, 10, 13, 1, 7, 5, 15, 3, 11, 1, 38, 1, 2, 14, 19, 12, 13, 1, 21, 16, 9, 1, 62, 1, 15, 14, 25, 1, 7, 7, 27, 20, 17, 1, 11, 16, 11, 22, 31, 1, 42, 1, 33, 16, 2, 18, 134, 1, 21, 26, 78, 1, 13, 1, 39, 28, 23, 18, 182
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 15 2021

Keywords

Examples

			a(30) = Sum_{p|30} p^omega(30/p) = 2^omega(15) + 3^omega(10) + 5^omega(6) = 2^2 + 3^2 + 5^2 = 38.
		

Crossrefs

Cf. A001221 (omega), A010051, A369744.
Cf. also A369741, A369905, A369907.

Programs

  • Mathematica
    Table[Sum[k^PrimeNu[n/k] (PrimePi[k] - PrimePi[k - 1]) (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^omega(n/f[k,1])); \\ Michel Marcus, Jun 16 2021

Formula

a(p) = 1 for p prime.
a(n) = Sum_{d|n} d^omega(n/d) * c(d), where c = A010051. - Wesley Ivan Hurt, Apr 13 2025

A369779 a(n) = n * Sum_{p|n, p prime} phi(n/p) / p.

Original entry on oeis.org

0, 1, 1, 2, 1, 8, 1, 8, 6, 22, 1, 20, 1, 44, 26, 32, 1, 66, 1, 48, 48, 112, 1, 80, 20, 158, 54, 92, 1, 172, 1, 128, 116, 274, 62, 156, 1, 344, 162, 192, 1, 348, 1, 228, 174, 508, 1, 320, 42, 540, 278, 320, 1, 594, 130, 368, 348, 814, 1, 448, 1, 932, 306, 512, 176
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 31 2024

Keywords

Comments

Dirichlet convolution of A010051(n) and A002618(n). - Wesley Ivan Hurt, Jul 10 2025

Crossrefs

Programs

  • Mathematica
    Table[n*DivisorSum[n, EulerPhi[n/#]/# &, PrimeQ[#] &], {n, 100}]
  • PARI
    A369779(n) = if(1==n, 0, my(f=factor(n)); n*sum(i=1, #f~, (eulerphi(n/f[i, 1])/f[i,1]))); \\ Antti Karttunen, Jan 23 2025

Formula

From Wesley Ivan Hurt, Jul 10 2025: (Start)
a(n) = Sum_{d|n} A010051(d) * A002618(n/d).
a(p^k) = ceiling(p^(2k-2)-p^(2k-3)) for p prime and k>=1. (End)
Showing 1-2 of 2 results.