A369947 a(n) is the maximal determinant of an n X n Hankel matrix using the first 2*n - 1 prime numbers.
1, 2, 11, 286, 86087, 9603283, 1764195984
Offset: 0
Examples
a(2) = 11: 3, 2; 2, 5. a(3) = 286: 3, 11, 5; 11, 5, 7; 5, 7, 2. a(4) = 86087: 7, 3, 13, 17; 3, 13, 17, 2; 13, 17, 2, 11; 17, 2, 11, 5.
Links
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
a[n_] := Max[Table[Det[HankelMatrix[Join[Drop[per = Part[Permutations[Prime[Range[2 n - 1]]], i], n], {Part[per, n]}], Join[{Part[per, n]}, Drop[per, - n]]]], {i, (2 n - 1) !}]]; Join[{1}, Array[a, 5]]
-
PARI
a(n) = my(v=[1..2*n-1], m=-oo, d); forperm(v, p, d = matdet(matrix(n, n, i, j, prime(p[i+j-1]))); if (d>m, m = d)); m; \\ Michel Marcus, Feb 08 2024
-
Python
from itertools import permutations from sympy import primerange, prime, Matrix def A369947(n): return max(Matrix([p[i:i+n] for i in range(n)]).det() for p in permutations(primerange(prime((n<<1)-1)+1))) if n else 1 # Chai Wah Wu, Feb 12 2024
Extensions
a(6) from Michel Marcus, Feb 08 2024