cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A370055 a(n) = 3*(3*n+2)!/(2*n+3)!.

Original entry on oeis.org

1, 3, 24, 330, 6552, 171360, 5581440, 218045520, 9945936000, 519177859200, 30535045632000, 1998518736614400, 144098325316915200, 11350405033583616000, 969837188805041356800, 89351761457237190912000, 8830056426362263572480000, 931769828125956695715840000
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*(3*n+2)!/(2*n+3)!;

Formula

E.g.f.: exp( Sum_{k>=1} binomial(3*k,k) * x^k/k ).
a(n) = 3*A076151(n+1) for n > 0.
a(n) = A000142(n)*A001764(n+1). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^(2/3))^3.
a(n) = 3 * Sum_{k=0..n} (2*n+3)^(k-1) * |Stirling1(n,k)|. (End)
E.g.f.: (1/x) * Series_Reversion( x/(1 + x)^3 ). - Seiichi Manyama, Feb 06 2025

A380511 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 55, 961, 23141, 711421, 26631235, 1175535425, 59786520841, 3442729157461, 221413508687471, 15730688410899265, 1223574846548300845, 103417508018836074701, 9437941200860641295611, 924934291227615821904001, 96881241931552168636182545, 10801002623361396194857667365
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-3*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^2 ) ). - Seiichi Manyama, Mar 15 2025

A375868 E.g.f. satisfies A(x) = exp( 2 * (exp(x*A(x)) - 1) ).

Original entry on oeis.org

1, 2, 14, 178, 3342, 83594, 2620998, 98968034, 4375295390, 221781470202, 12684194298998, 808136496137810, 56767509202678094, 4359070656483638762, 363283064756899367462, 32658326649544884611010, 3150270056733608259143422, 324571774149991316277596378
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (2*n+2)^(k-1)*stirling(n, k, 2));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A349598.
a(n) = 2 * Sum_{k=0..n} (2*n+2)^(k-1) * Stirling2(n,k).

A380945 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-2*x) ).

Original entry on oeis.org

1, 4, 50, 1124, 37192, 1637232, 90278176, 5992556320, 465599728512, 41470892979200, 4167168740195584, 466428111222196224, 57556315795242096640, 7763511917730857967616, 1136484206117494859980800, 179453678311835212416585728, 30404317385796994658988752896
Offset: 0

Views

Author

Seiichi Manyama, Feb 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=2, r=2, s=2, t=0, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(2*x*A(x))/(1 - x*A(x))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380723.
a(n) = 2 * n! * Sum_{k=0..n} (2*n+2)^(k-1) * binomial(3*n-k+1,n-k)/k!.
Showing 1-4 of 4 results.