cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369190 Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^4) ).

Original entry on oeis.org

1, 2, 3, -2, -39, -176, -442, -26, 6222, 36062, 113240, 91632, -1303985, -9362520, -34625652, -50327818, 293446186, 2693939308, 11475384425, 23120716658, -62820989127, -813918935104, -3964894957296, -10002153961552, 10192131001136, 250612187843962
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(4*(n+1), n-k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A368467(k) * x^k/k ).
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(4*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^4 )^(n+1).

A370106 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n,k) * binomial(3*n,n-k).

Original entry on oeis.org

1, 1, -3, -17, -19, 126, 591, 344, -5907, -22373, 2122, 280842, 854063, -810692, -13254552, -31693392, 67250413, 615932985, 1101123015, -4368359919, -28043889894, -33371056204, 254637122506, 1245324193704, 693586015791, -13913192640499
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k * binomial(2*n, k)*binomial(3*n, n-k));

Formula

a(n) = [x^n] ( (1-x)^2 * (1+x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x/((1-x)^2*(1+x)^3) ). See A370107.
Showing 1-2 of 2 results.