cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368467 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n,k) * binomial(4*n,n-k).

Original entry on oeis.org

1, 2, 2, -16, -126, -498, -880, 3432, 37762, 175916, 411502, -710752, -12482928, -66911830, -190616760, 70959984, 4208145282, 26042918836, 86794308524, 50521487200, -1397839172626, -10176550581570, -38838971577536, -51156092490048, 443929768322704
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k * binomial(2*n, k)*binomial(4*n, n-k));

Formula

a(n) = [x^n] ( (1-x)^2 * (1+x)^4 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x/((1-x)^2*(1+x)^4) ). See A369190.

A370107 Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^3) ).

Original entry on oeis.org

1, 1, -1, -7, -10, 27, 152, 169, -949, -4286, -2646, 36499, 133684, -376, -1458768, -4325495, 3422105, 59242995, 139491393, -260949134, -2414487452, -4307455022, 15274866472, 97910544003, 119082795965, -805538039024, -3921641157424, -2408010178616, 40104318820288
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(3*(n+1), n-k))/(n+1);
    
  • PARI
    my(x='x+O('x^30)); Vec(serreverse(x/((1-x)^2*(1+x)^3))/x) \\ Michel Marcus, Feb 10 2024

Formula

G.f.: exp( Sum_{k>=1} A370106(k) * x^k/k ).
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(3*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^3 )^(n+1).
Showing 1-2 of 2 results.