cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370121 Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 0 <= k <= n; sums of two primorials, not necessarily distinct.

Original entry on oeis.org

2, 3, 4, 7, 8, 12, 31, 32, 36, 60, 211, 212, 216, 240, 420, 2311, 2312, 2316, 2340, 2520, 4620, 30031, 30032, 30036, 30060, 30240, 32340, 60060, 510511, 510512, 510516, 510540, 510720, 512820, 540540, 1021020, 9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380, 223092871, 223092872
Offset: 0

Views

Author

Antti Karttunen, Feb 29 2024

Keywords

Comments

After the initial 2, numbers with either one 2 or two 1's in their primorial base representation (A049345), with all the other digits zeros.

Examples

			Triangle begins as:
        2;
        3,       4;
        7,       8,      12;
       31,      32,      36,      60;
      211,     212,     216,     240,     420;
     2311,    2312,    2316,    2340,    2520,    4620;
    30031,   30032,   30036,   30060,   30240,   32340,   60060;
   510511,  510512,  510516,  510540,  510720,  512820,  540540,  1021020;
  9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380;
		

Crossrefs

Cf. A002110, A049345, A087112, A276086, A276150, A370129 (arithmetic derivative applied to this triangle).
Cf. A006862 (left edge), A088860 (right edge).
Cf. A177689 (same triangle without the right edge), A370134 (without the leftmost column).
Subsequence of A370132.
Cf. also A173786.

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A370121(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(c) + A002110(n - binomial(c + 1, 2))); };

Formula

For n >= 1, A276150(a(n)) = 2.
For n >= 1, A276086(a(n)) = A087112(1+n).