2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0
Triangle begins as:
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
129, 130, 132, 136, 144, 160, 192, 256;
257, 258, 260, 264, 272, 288, 320, 384, 512;
513, 514, 516, 520, 528, 544, 576, 640, 768, 1024;
1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
A370129
Triangle read by rows: T(n,k) = A003415(A002110(n)+A002110(k)), 0 <= k <= n; arithmetic derivatives of the sums of two primorial numbers.
Original entry on oeis.org
1, 1, 4, 1, 12, 16, 1, 80, 60, 92, 1, 216, 540, 608, 704, 1, 3740, 3100, 4548, 6324, 8164, 568, 60080, 40060, 56292, 116208, 61768, 110752, 33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844, 28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056, 704080, 335024060
Offset: 0
Triangle begins as:
1;
1, 4;
1, 12, 16;
1, 80, 60, 92;
1, 216, 540, 608, 704;
1, 3740, 3100, 4548, 6324, 8164;
568, 60080, 40060, 56292, 116208, 61768, 110752;
33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844;
28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056;
Cf. also
A024451 (arithmetic derivatives of primorials).
A370134
Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 1 <= k <= n; sums of two primorials > 1, not necessarily distinct.
Original entry on oeis.org
4, 8, 12, 32, 36, 60, 212, 216, 240, 420, 2312, 2316, 2340, 2520, 4620, 30032, 30036, 30060, 30240, 32340, 60060, 510512, 510516, 510540, 510720, 512820, 540540, 1021020, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380, 223092872, 223092876, 223092900, 223093080, 223095180, 223122900, 223603380
Offset: 1
Triangle begins as:
4;
8, 12;
32, 36, 60;
212, 216, 240, 420;
2312, 2316, 2340, 2520, 4620;
30032, 30036, 30060, 30240, 32340, 60060;
510512, 510516, 510540, 510720, 512820, 540540, 1021020;
9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380;
-
nn = 20; MapIndexed[Set[P[First[#2] - 1], #1] &, FoldList[Times, 1, Prime@ Range[nn + 1]]]; Table[(P[n] + P[k]), {n, nn}, {k, n}] (* Michael De Vlieger, Mar 08 2024 *)
-
A002110(n) = prod(i=1,n,prime(i));
A370134(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2); (A002110(1+c) + A002110(1+n - binomial(c + 1, 2))); };
A373844
Triangle read by rows: T(n,k) = A276086(1 + A002110(n) + A002110(k)), 1 <= k <= n, where A276086 is the primorial base exp-function.
Original entry on oeis.org
18, 30, 50, 42, 70, 98, 66, 110, 154, 242, 78, 130, 182, 286, 338, 102, 170, 238, 374, 442, 578, 114, 190, 266, 418, 494, 646, 722, 138, 230, 322, 506, 598, 782, 874, 1058, 174, 290, 406, 638, 754, 986, 1102, 1334, 1682, 186, 310, 434, 682, 806, 1054, 1178, 1426, 1798, 1922, 222, 370, 518, 814, 962, 1258, 1406, 1702, 2146, 2294, 2738
Offset: 1
Triangle begins as:
18,
30, 50,
42, 70, 98,
66, 110, 154, 242,
78, 130, 182, 286, 338,
102, 170, 238, 374, 442, 578,
114, 190, 266, 418, 494, 646, 722,
138, 230, 322, 506, 598, 782, 874, 1058,
174, 290, 406, 638, 754, 986, 1102, 1334, 1682,
186, 310, 434, 682, 806, 1054, 1178, 1426, 1798, 1922,
222, 370, 518, 814, 962, 1258, 1406, 1702, 2146, 2294, 2738,
etc.
-
A002110(n) = prod(i=1,n,prime(i));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A373844(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); A276086(1+(A002110(1+c)+x)); };
A373845
Triangle read by rows: T(n,k) = arithmetic derivative of (1 + A002110(n) + A002110(k)), 1 <= k <= n, where A002110(n) is the n-th primorial number.
Original entry on oeis.org
1, 6, 1, 14, 1, 1, 74, 38, 1, 1, 1551, 338, 1, 1, 1, 21084, 8631, 1330, 1, 1, 3550, 172655, 72938, 1970, 3410, 1, 1, 5822, 3233234, 4157356, 421750, 228491, 10190, 13610, 537398, 289610, 297753138, 32805527, 5188250, 8698439, 761710, 1, 18344100, 1, 6954431, 2156564414, 929540471, 68769335, 335525472, 4283242, 21900155, 348965439, 109820278, 185002, 32593310
Offset: 1
Triangle begins as:
1,
6, 1,
14, 1, 1,
74, 38, 1, 1,
1551, 338, 1, 1, 1,
21084, 8631, 1330, 1, 1, 3550,
172655, 72938, 1970, 3410, 1, 1, 5822,
3233234, 4157356, 421750, 228491, 10190, 13610, 537398, 289610,
297753138, 32805527, 5188250, 8698439, 761710, 1, 18344100, 1, 6954431,
etc.
Cf. also
A024451,
A370129,
A370138 (arithmetic derivative applied to the sums of a constant number of primorials).
-
A002110(n) = prod(i=1,n,prime(i));
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373845(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); A003415(1+(A002110(1+c)+x)); };
Comments