A370016
Expansion of A(x) = [ Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) ]^(1/3).
Original entry on oeis.org
1, 1, -1, 9, -18, 44, -54, 350, -1359, 3789, -9585, 42489, -163900, 543474, -1933092, 7499404, -27668718, 100329714, -371138346, 1394575578, -5236658316, 19587163968, -73536845444, 278088068628, -1052804678958, 3985553554074, -15132118280498, 57617112474306, -219680808219216
Offset: 0
G.f.: A(x) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + 543474*x^13 - 1933092*x^14 + 7499404*x^15 + ...
where the cube of g.f. A(x) yields the series
A(x)^3 = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The cube of g.f. A(x) also equals the infinite product
A(x)^3 = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
Equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) * (1 + 6*x^2 - 24*x^4 - 64*x^6)^(1/3) * (1 + 12*x^3 - 96*x^6 - 512*x^9)^(1/3) * (1 + 24*x^4 - 384*x^8 - 4096*x^12)^(1/3) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15)^(1/3) * ...
where
(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 + ... + A370145(n)*x^n + ...
-
Round[CoefficientList[Series[QPochhammer[-2, 2*x]^(1/3) * QPochhammer[-1/2, 2*x]^(1/3) * QPochhammer[2*x]^(1/3)*2^(1/3)/3^(2/3), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 23 2024 *)
-
{a(n) = my(A);
A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n))^(1/3);
polcoeff(H=A, n)}
for(n=0, 30, print1(a(n), ", "))
A370149
Expansion of ( (1 + x)*(1 - 11*x)*(1 + 121*x) )^(1/3).
Original entry on oeis.org
1, 37, -1776, 114096, -9165936, 810646320, -76152738288, 7450371782832, -750608233752432, 77319392827405872, -8104270335592602864, 861419406835986019248, -92621128795282877608560, 10055062260891607562940720, -1100545944769838408566122480, 121306087657061323164937678512
Offset: 0
G.f.: A(x) = 1 + 37*x - 1776*x^2 + 114096*x^3 - 9165936*x^4 + 810646320*x^5 - 76152738288*x^6 + 7450371782832*x^7 - 750608233752432*x^8 + ...
where A(x)^3 = (1 + 111*x - 1221*x^2 - 1331*x^3).
RELATED SERIES.
We have the following infinite product
A(x)^3 * A(11*x^2)^3 * A(11^2*x^3)^3 * A(11^3*x^4)^3 * ... = 1 + 111*x + 147631*x^3 + 2161452161*x^6 + 348104014265601*x^10 + 616687495357008127151*x^15 + ... + 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2) + ...
-
{a(n) = polcoeff( ( (1 + x)*(1 - 11*x)*(1 + 121*x) +x*O(x^n))^(1/3), n)}
for(n=0, 40, print1(a(n), ", "))
A370140
Expansion of g.f. A(x,y) satisfying Sum_{n>=0} Product_{k=1..n} (x^k + y*A(x,y)) = 1 + (y+1) * Sum_{n>=1} x^(n*(n+1)/2), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y) read by rows.
Original entry on oeis.org
1, -1, -1, 1, 2, 1, -1, -3, -3, -1, 0, 3, 6, 4, 1, 1, 0, -7, -10, -5, -1, -1, -6, -1, 14, 15, 6, 1, 0, 12, 25, 3, -25, -21, -7, -1, 0, -14, -64, -75, -5, 41, 28, 8, 1, 1, 11, 102, 231, 179, 5, -63, -36, -9, -1, -1, -4, -109, -448, -651, -365, 0, 92, 45, 10, 1, 0, -5, 53, 593, 1486, 1546, 665, -14, -129, -55, -11, -1, 0, 12, 75, -407, -2342, -4077, -3241, -1114, 42, 175, 66, 12, 1
Offset: 1
G.f.: A(x,y) = x*(1) + x^2*(-1 - y) + x^3*(1 + 2*y + y^2) + x^4*(-1 - 3*y - 3*y^2 - y^3) + x^5*(3*y + 6*y^2 + 4*y^3 + y^4) + x^6*(1 - 7*y^2 - 10*y^3 - 5*y^4 - y^5) + x^7*(-1 - 6*y - y^2 + 14*y^3 + 15*y^4 + 6*y^5 + y^6) + x^8*(12*y + 25*y^2 + 3*y^3 - 25*y^4 - 21*y^5 - 7*y^6 - y^7) + x^9*(-14*y - 64*y^2 - 75*y^3 - 5*y^4 + 41*y^5 + 28*y^6 + 8*y^7 + y^8) + x^10*(1 + 11*y + 102*y^2 + 231*y^3 + 179*y^4 + 5*y^5 - 63*y^6 - 36*y^7 - 9*y^8 - y^9) + x^11*(-1 - 4*y - 109*y^2 - 448*y^3 - 651*y^4 - 365*y^5 + 92*y^7 + 45*y^8 + 10*y^9 + y^10) + ...
Let Q(x,y) = 1 + (y+1) * Sum_{n>=1} x^(n*(n+1)/2)
then A = A(x,y) satisfies
(1) Q(x,y) = 1 + (x + y*A) + (x + y*A)*(x^2 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A)*(x^4 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A)*(x^4 + y*A)*(x^5 + y*A) + ...
also
(2) Q(x,y) = 1/(1 - y*A) + x/((1 - y*A)*(1 - x*y*A)) + x^3/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)) + x^6/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)) + x^10/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)*(1 - x^4*y*A)) + ...
Further, A = A(x) satisfies the continued fraction given by
(3) Q(x,y) = 1/(1 - (x + y*A)/(1 + x + y*A - (x^2 + y*A)/(1 + x^2 + y*A - (x^3 + y*A)/(1 + x^3 + y*A - (x^4 + y*A)/(1 + x^4 + y*A - (x^5 + y*A)/(1 + x^5 + y*A - (x^6 + y*A)/(1 + x^6 + y*A - (x^7 + y*A)/(1 - ...))))))))
where
Q(x,y) = 1 + (y+1)*x + (y+1)*x^3 + (y+1)*x^6 + (y+1)*x^10 + (y+1)*x^15 + (y+1)*x^21 + ... + (y+1)*x^(n*(n+1)/2) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
1;
-1, -1;
1, 2, 1;
-1, -3, -3, -1;
0, 3, 6, 4, 1;
1, 0, -7, -10, -5, -1;
-1, -6, -1, 14, 15, 6, 1;
0, 12, 25, 3, -25, -21, -7, -1;
0, -14, -64, -75, -5, 41, 28, 8, 1;
1, 11, 102, 231, 179, 5, -63, -36, -9, -1;
-1, -4, -109, -448, -651, -365, 0, 92, 45, 10, 1;
0, -5, 53, 593, 1486, 1546, 665, -14, -129, -55, -11, -1;
0, 12, 75, -407, -2342, -4077, -3241, -1114, 42, 175, 66, 12, 1;
0, -15, -240, -391, 2087, 7481, 9736, 6182, 1749, -90, -231, -78, -13, -1;
1, 19, 375, 1867, 1232, -8239, -20469, -20908, -10953, -2608, 165, 298, 91, 14, 1;
-1, -26, -420, -3629, -9480, -2256, 26993, 49721, 41292, 18292, 3729, -275, -377, -105, -15, -1;
...
The g.f. of column 0 = (1-x) * Sum_{n>=1} x^(n*(n+1)/2).
The g.f. of column 1 = -(1-x)^2/(1+x) * [Sum_{n>=0} x^(n*(n+1)/2)] * [Sum_{n>=1} x^(n*(n+1)/2)]^2.
-
{T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff( (sum(m=1,#A, prod(k=1,m, x^k + y*Ser(A) ) ) - (y+1)*sum(m=1,sqrtint(2*#A+1), x^(m*(m+1)/2) ) )/(-y), #A-1) ); H=A; polcoeff(A[n+1],k,y)}
for(n=1,21, for(k=0,n-1, print1(T(n,k),", "));print(""))
-
/* Generate A(x,y) recursively using integration wrt y */
{T(n,k) = my(A = x +x*O(x^n), Q = sum(m=1,sqrtint(2*n+1), x^(m*(m+1)/2) +x*O(x^n)) );
for(i=1,n, A = (1/y) * intformal( Q/sum(m=1,n, sum(j=1,m, prod(k=1,m, if(j==k,1, x^k + y*A) +O(x^n))) ), y) ); polcoeff(polcoeff(A,n,x),k,y)}
for(n=1,15,for(k=0,n-1, print1(T(n,k),", "));print(""))
A370147
Expansion of ( (1 + x)*(1 + 7*x)*(1 + 49*x) )^(1/3).
Original entry on oeis.org
1, 19, -228, 6492, -216372, 7851180, -300848772, 11974587132, -490113592788, 20492868223308, -871404823013412, 37562003034015900, -1637401559515373172, 72053378865932154348, -3196217668534369463748, 142763786831538212246076, -6415201218873454789867284, 289797678008730755585589900
Offset: 0
G.f.: A(x) = 1 + 19*x - 228*x^2 + 6492*x^3 - 216372*x^4 + 7851180*x^5 - 300848772*x^6 + 11974587132*x^7 - 490113592788*x^8 + ...
where A(x)^3 = (1 + 57*x + 399*x^2 + 343*x^3).
RELATED SERIES.
We have the following infinite product involving the g.f. A(x)
A(x)^3 * A(-7*x^2)^3 * A(49*x^3)^3 * A(-343*x^4)^3 * A(2401*x^5)^3 * ... = 1 + 57*x - 19607*x^3 - 47079151*x^6 + 791260232049*x^10 + 93090977300134793*x^15 + ... + (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2) + ...
-
{a(n) = polcoeff( ( (1 + x)*(1 + 7*x)*(1 + 49*x) +x*O(x^n))^(1/3), n)}
for(n=0, 40, print1(a(n), ", "))
A370146
Expansion of x / Series_Reversion( x/(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) ).
Original entry on oeis.org
1, -1, 3, 0, 0, 0, -9, 0, 27, 0, 0, 0, -324, 0, 1215, 0, 0, 0, -18711, 0, 75816, 0, 0, 0, -1301265, 0, 5484996, 0, 0, 0, -100048689, 0, 431943435, 0, 0, 0, -8192222064, 0, 35942240565, 0, 0, 0, -700434986472, 0, 3108770417700, 0, 0, 0, -61805774132388, 0, 276711654879477
Offset: 0
G.f.: A(x) = = 1 - x + 3*x^2 - 9*x^6 + 27*x^8 - 324*x^12 + 1215*x^14 - 18711*x^18 + 75816*x^20 - 1301265*x^24 + 5484996*x^26 - 100048689*x^30 + ...
RELATED SERIES.
If A(x) = 1/B(x/A(x)) then B(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) begins
B(x) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 - 12747*x^10 + 44715*x^11 + ... + A370145(n)*x^n + ...
A(x) = 1/D(x^6) + 3*x^2*D(x^6) - x, where
1/D(x) = 1 - 9*x - 324*x^2 - 18711*x^3 - 1301265*x^4 - 100048689*x^5 - 8192222064*x^6 - 700434986472*x^7 + ...
and D(x) = ( (1-sqrt(1-108*x))/(54*x) )^(1/3) begins
D(x) = 1 + 9*x + 405*x^2 + 25272*x^3 + 1828332*x^4 + 143981145*x^5 + 11980746855*x^6 + 1036256805900*x^7 + ... + 3^n*A008931(n)*x^n + ...
-
{a(n) = polcoeff( x/serreverse( x/(1 + 3*x - 6*x^2 - 8*x^3 +x*O(x^n))^(1/3) ), n)}
for(n=0,50,print1(a(n),", "))
A370779
Expansion of ( (1 + x)*(1 - 5*x)*(1 + 25*x) )^(1/3).
Original entry on oeis.org
1, 7, -84, 1020, -17220, 313068, -6075444, 122709468, -2553130020, 54317619660, -1175968479252, 25819593611196, -573476704909572, 12861006710141100, -290799326551852020, 6621725329384239516, -151707434284857934308, 3494405505576163607436
Offset: 0
A370780
Expansion of ( (1 + x)*(1 - 17*x)*(1 + 289*x) )^(1/3).
Original entry on oeis.org
1, 91, -9828, 1535868, -294731892, 62322050700, -13990450587012, 3270320252339868, -787131217405990548, 193694053976566000812, -48497295306135216560292, 12313491783703337923916220, -3162498663877264843739477172
Offset: 0
A370781
Expansion of 1 / ( (1 - x)*(1 + 2*x)*(1 - 4*x) )^(1/3).
Original entry on oeis.org
1, 1, 4, 10, 37, 121, 442, 1576, 5818, 21466, 80272, 301324, 1138762, 4320226, 16459132, 62904664, 241134553, 926678569, 3569385772, 13776307714, 53267766997, 206304355225, 800203300354, 3108008802064, 12086612436376, 47056902019336, 183400211694496
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1+2*x)*(1-4*x))^(1/3))
-
a(n) = sum(k=0, n\2, (-9)^k*binomial(-1/3, k)*binomial(n, 2*k)); \\ Seiichi Manyama, Aug 18 2025
Showing 1-8 of 8 results.
Comments