cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A370016 Expansion of A(x) = [ Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, 1, -1, 9, -18, 44, -54, 350, -1359, 3789, -9585, 42489, -163900, 543474, -1933092, 7499404, -27668718, 100329714, -371138346, 1394575578, -5236658316, 19587163968, -73536845444, 278088068628, -1052804678958, 3985553554074, -15132118280498, 57617112474306, -219680808219216
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2024

Keywords

Comments

Equals the self-convolution cube root of A370015.

Examples

			G.f.: A(x) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + 543474*x^13 - 1933092*x^14 + 7499404*x^15 + ...
where the cube of g.f. A(x) yields the series
A(x)^3 = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The cube of g.f. A(x) also equals the infinite product
A(x)^3 = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
Equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) * (1 + 6*x^2 - 24*x^4 - 64*x^6)^(1/3) * (1 + 12*x^3 - 96*x^6 - 512*x^9)^(1/3) * (1 + 24*x^4 - 384*x^8 - 4096*x^12)^(1/3) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15)^(1/3) * ...
where
(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 + ... + A370145(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    Round[CoefficientList[Series[QPochhammer[-2, 2*x]^(1/3) * QPochhammer[-1/2, 2*x]^(1/3) * QPochhammer[2*x]^(1/3)*2^(1/3)/3^(2/3), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 23 2024 *)
  • PARI
    {a(n) = my(A);
    A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n))^(1/3);
    polcoeff(H=A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).
(2) A(x)^3 = Product_{n>=1} (1 + 2^(n-1)*x^n) * (1 - 2^n*x^n) * (1 + 2^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 2^(n-1)*x^n ), where F(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3).
a(n) ~ c * (-1)^(n+1) * 4^n / n^(4/3), where c = 0.260357663494676514371316... - Vaclav Kotesovec, Feb 23 2024
Radius of convergence r = 1/4 (from Vaclav Kotesovec's formula) and A(r) = ( Sum_{n>=0} (1/2^n + 2*2^n)/3 * 1/2^(n*(n+1)/2) )^(1/3) = ( Product_{n>=1} (1 + 1/2^n)*(1 - 1/4^(n+1)) )^(1/3) = 1.298389210904220681888354941631161162163... - Paul D. Hanna, Mar 07 2024

A370149 Expansion of ( (1 + x)*(1 - 11*x)*(1 + 121*x) )^(1/3).

Original entry on oeis.org

1, 37, -1776, 114096, -9165936, 810646320, -76152738288, 7450371782832, -750608233752432, 77319392827405872, -8104270335592602864, 861419406835986019248, -92621128795282877608560, 10055062260891607562940720, -1100545944769838408566122480, 121306087657061323164937678512
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2024

Keywords

Comments

The cube root of F(x) = (1 + x)*(1 - 11*x)*(1 + 121*x) = (1 + 111*x - 1221*x^2 - 1331*x^3) has integer coefficients because F(x) == (1+x)^3 (mod 9).

Examples

			G.f.: A(x) = 1 + 37*x - 1776*x^2 + 114096*x^3 - 9165936*x^4 + 810646320*x^5 - 76152738288*x^6 + 7450371782832*x^7 - 750608233752432*x^8 + ...
where A(x)^3 = (1 + 111*x - 1221*x^2 - 1331*x^3).
RELATED SERIES.
We have the following infinite product
A(x)^3 * A(11*x^2)^3 * A(11^2*x^3)^3 * A(11^3*x^4)^3 * ... = 1 + 111*x + 147631*x^3 + 2161452161*x^6 + 348104014265601*x^10 + 616687495357008127151*x^15 + ... + 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( ( (1 + x)*(1 - 11*x)*(1 + 121*x) +x*O(x^n))^(1/3), n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = (1 + x)*(1 - 11*x)*(1 + 121*x) = (1 + 111*x - 1221*x^2 - 1331*x^3).
(2) Product_{n>=1} A( 11^(n-1)*x^n )^3 = Sum_{n>=0} 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2).
a(n) ~ (-1)^(n+1) * 2^(5/3) * 5^(1/3) * 11^(2*n-1) / (3^(1/3) * Gamma(2/3) * n^(4/3)). - Vaclav Kotesovec, Feb 25 2024

A370140 Expansion of g.f. A(x,y) satisfying Sum_{n>=0} Product_{k=1..n} (x^k + y*A(x,y)) = 1 + (y+1) * Sum_{n>=1} x^(n*(n+1)/2), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y) read by rows.

Original entry on oeis.org

1, -1, -1, 1, 2, 1, -1, -3, -3, -1, 0, 3, 6, 4, 1, 1, 0, -7, -10, -5, -1, -1, -6, -1, 14, 15, 6, 1, 0, 12, 25, 3, -25, -21, -7, -1, 0, -14, -64, -75, -5, 41, 28, 8, 1, 1, 11, 102, 231, 179, 5, -63, -36, -9, -1, -1, -4, -109, -448, -651, -365, 0, 92, 45, 10, 1, 0, -5, 53, 593, 1486, 1546, 665, -14, -129, -55, -11, -1, 0, 12, 75, -407, -2342, -4077, -3241, -1114, 42, 175, 66, 12, 1
Offset: 1

Views

Author

Paul D. Hanna, Feb 12 2024

Keywords

Comments

A370141(n) = Sum_{k=0..n-1} T(n,k), for n >= 1.
A370142(n) = Sum_{k=0..n-1} T(n,k) * 2^k, for n >= 1.
A370143(n) = Sum_{k=0..n-1} T(n,k) * 3^k, for n >= 1.
A370144(n) = Sum_{k=0..n-1} T(n,k) * 4^k, for n >= 1.

Examples

			G.f.: A(x,y) = x*(1) + x^2*(-1 - y) + x^3*(1 + 2*y + y^2) + x^4*(-1 - 3*y - 3*y^2 - y^3) + x^5*(3*y + 6*y^2 + 4*y^3 + y^4) + x^6*(1 - 7*y^2 - 10*y^3 - 5*y^4 - y^5) + x^7*(-1 - 6*y - y^2 + 14*y^3 + 15*y^4 + 6*y^5 + y^6) + x^8*(12*y + 25*y^2 + 3*y^3 - 25*y^4 - 21*y^5 - 7*y^6 - y^7) + x^9*(-14*y - 64*y^2 - 75*y^3 - 5*y^4 + 41*y^5 + 28*y^6 + 8*y^7 + y^8) + x^10*(1 + 11*y + 102*y^2 + 231*y^3 + 179*y^4 + 5*y^5 - 63*y^6 - 36*y^7 - 9*y^8 - y^9) + x^11*(-1 - 4*y - 109*y^2 - 448*y^3 - 651*y^4 - 365*y^5 + 92*y^7 + 45*y^8 + 10*y^9 + y^10) + ...
Let Q(x,y) = 1 + (y+1) * Sum_{n>=1} x^(n*(n+1)/2)
then A = A(x,y) satisfies
(1) Q(x,y) = 1 + (x + y*A) + (x + y*A)*(x^2 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A)*(x^4 + y*A) + (x + y*A)*(x^2 + y*A)*(x^3 + y*A)*(x^4 + y*A)*(x^5 + y*A) + ...
also
(2) Q(x,y) = 1/(1 - y*A) + x/((1 - y*A)*(1 - x*y*A)) + x^3/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)) + x^6/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)) + x^10/((1 - y*A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)*(1 - x^4*y*A)) + ...
Further, A = A(x) satisfies the continued fraction given by
(3) Q(x,y) = 1/(1 - (x + y*A)/(1 + x + y*A - (x^2 + y*A)/(1 + x^2 + y*A - (x^3 + y*A)/(1 + x^3 + y*A - (x^4 + y*A)/(1 + x^4 + y*A - (x^5 + y*A)/(1 + x^5 + y*A - (x^6 + y*A)/(1 + x^6 + y*A - (x^7 + y*A)/(1 - ...))))))))
where
Q(x,y) = 1 + (y+1)*x + (y+1)*x^3 + (y+1)*x^6 + (y+1)*x^10 + (y+1)*x^15 + (y+1)*x^21 + ... + (y+1)*x^(n*(n+1)/2) + ...
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
 1;
 -1, -1;
 1, 2, 1;
 -1, -3, -3, -1;
 0, 3, 6, 4, 1;
 1, 0, -7, -10, -5, -1;
 -1, -6, -1, 14, 15, 6, 1;
 0, 12, 25, 3, -25, -21, -7, -1;
 0, -14, -64, -75, -5, 41, 28, 8, 1;
 1, 11, 102, 231, 179, 5, -63, -36, -9, -1;
 -1, -4, -109, -448, -651, -365, 0, 92, 45, 10, 1;
 0, -5, 53, 593, 1486, 1546, 665, -14, -129, -55, -11, -1;
 0, 12, 75, -407, -2342, -4077, -3241, -1114, 42, 175, 66, 12, 1;
 0, -15, -240, -391, 2087, 7481, 9736, 6182, 1749, -90, -231, -78, -13, -1;
 1, 19, 375, 1867, 1232, -8239, -20469, -20908, -10953, -2608, 165, 298, 91, 14, 1;
 -1, -26, -420, -3629, -9480, -2256, 26993, 49721, 41292, 18292, 3729, -275, -377, -105, -15, -1;
...
The g.f. of column 0 = (1-x) * Sum_{n>=1} x^(n*(n+1)/2).
The g.f. of column 1 = -(1-x)^2/(1+x) * [Sum_{n>=0} x^(n*(n+1)/2)] * [Sum_{n>=1} x^(n*(n+1)/2)]^2.
		

Crossrefs

Cf. A370141 (y=1), A370142 (y=2), A370143 (y=3), A370144 (y=4).
Cf. A370145 (column 1), A370146 (column 2).

Programs

  • PARI
    {T(n,k) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( (sum(m=1,#A, prod(k=1,m, x^k + y*Ser(A) ) ) - (y+1)*sum(m=1,sqrtint(2*#A+1), x^(m*(m+1)/2) ) )/(-y), #A-1)  ); H=A; polcoeff(A[n+1],k,y)}
    for(n=1,21, for(k=0,n-1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Generate A(x,y) recursively using integration wrt y */
    {T(n,k) = my(A = x +x*O(x^n), Q = sum(m=1,sqrtint(2*n+1), x^(m*(m+1)/2) +x*O(x^n)) );
    for(i=1,n, A = (1/y) * intformal( Q/sum(m=1,n, sum(j=1,m, prod(k=1,m, if(j==k,1, x^k + y*A) +O(x^n))) ), y) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,15,for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k satisfies the following formulas.
Let Q(x,y) = 1 + (y+1) * Sum_{n>=1} x^(n*(n+1)/2), then
(1) Q(x,y) = Sum_{n>=0} Product_{k=1..n} (x^k + y*A(x,y)).
(2) Q(x,y) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=0..n} (1 - x^k * y*A(x,y)).
(3) Q(x,y) = 1/(1 - F(1)), where F(n) = (x^n + y*A(x,y))/(1 + x^n + y*A(x,y) - F(n+1)), a continued fraction.
(4) A(x,0) = (1-x) * Sum_{n>=1} x^(n*(n+1)/2), which is the g.f. of column 0.
(5) d/dy A(x,y) at y = 0 equals -(1-x)^2/(1+x) * Q(x,0) * (Q(x,0) - 1)^2, which is the g.f. of column 1.

A370147 Expansion of ( (1 + x)*(1 + 7*x)*(1 + 49*x) )^(1/3).

Original entry on oeis.org

1, 19, -228, 6492, -216372, 7851180, -300848772, 11974587132, -490113592788, 20492868223308, -871404823013412, 37562003034015900, -1637401559515373172, 72053378865932154348, -3196217668534369463748, 142763786831538212246076, -6415201218873454789867284, 289797678008730755585589900
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

The cube root of F(x) = (1 + x)*(1 + 7*x)*(1 + 49*x) = (1 + 57*x + 399*x^2 + 343*x^3) is an integer series because F(x) == (1+x)^3 (mod 9).
In general, for k > 1, if g.f. = ((1 + x)*(1 + k*x)*(1 + k^2*x))^(1/3), then a(n) ~ (-1)^(n+1) * (k-1)^(2/3) * (k+1)^(1/3) * k^(2*n-1) / (3*Gamma(2/3)*n^(4/3)). - Vaclav Kotesovec, Feb 24 2024

Examples

			G.f.: A(x) = 1 + 19*x - 228*x^2 + 6492*x^3 - 216372*x^4 + 7851180*x^5 - 300848772*x^6 + 11974587132*x^7 - 490113592788*x^8 + ...
where A(x)^3 = (1 + 57*x + 399*x^2 + 343*x^3).
RELATED SERIES.
We have the following infinite product involving the g.f. A(x)
A(x)^3 * A(-7*x^2)^3 * A(49*x^3)^3 * A(-343*x^4)^3 * A(2401*x^5)^3 * ... = 1 + 57*x - 19607*x^3 - 47079151*x^6 + 791260232049*x^10 + 93090977300134793*x^15 + ... + (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( ( (1 + x)*(1 + 7*x)*(1 + 49*x) +x*O(x^n))^(1/3), n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = (1 + x)*(1 + 7*x)*(1 + 49*x) = (1 + 57*x + 399*x^2 + 343*x^3).
(2) Product_{n>=1} A( (-7)^(n-1)*x^n )^3 = Sum_{n>=0} (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2).
a(n) ~ (-1)^(n+1) * 2^(5/3) * 7^(2*n-1) / (3^(1/3) * Gamma(2/3) * n^(4/3)). - Vaclav Kotesovec, Feb 24 2024

A370146 Expansion of x / Series_Reversion( x/(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) ).

Original entry on oeis.org

1, -1, 3, 0, 0, 0, -9, 0, 27, 0, 0, 0, -324, 0, 1215, 0, 0, 0, -18711, 0, 75816, 0, 0, 0, -1301265, 0, 5484996, 0, 0, 0, -100048689, 0, 431943435, 0, 0, 0, -8192222064, 0, 35942240565, 0, 0, 0, -700434986472, 0, 3108770417700, 0, 0, 0, -61805774132388, 0, 276711654879477
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

The cube root of F(x) = (1 + 3*x - 6*x^2 - 8*x^3) = (1 + x)*(1 - 2*x)*(1 + 4*x) is an integer series because F(x) == (1+x)^3 (mod 9).

Examples

			G.f.: A(x) = = 1 - x + 3*x^2 - 9*x^6 + 27*x^8 - 324*x^12 + 1215*x^14 - 18711*x^18 + 75816*x^20 - 1301265*x^24 + 5484996*x^26 - 100048689*x^30 + ...
RELATED SERIES.
If A(x) = 1/B(x/A(x)) then B(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) begins
B(x) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 - 12747*x^10 + 44715*x^11 + ... + A370145(n)*x^n + ...
A(x) = 1/D(x^6) + 3*x^2*D(x^6) - x, where
1/D(x) = 1 - 9*x - 324*x^2 - 18711*x^3 - 1301265*x^4 - 100048689*x^5 - 8192222064*x^6 - 700434986472*x^7 + ...
and D(x) = ( (1-sqrt(1-108*x))/(54*x) )^(1/3) begins
D(x) = 1 + 9*x + 405*x^2 + 25272*x^3 + 1828332*x^4 + 143981145*x^5 + 11980746855*x^6 + 1036256805900*x^7 + ... + 3^n*A008931(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( x/serreverse( x/(1 + 3*x - 6*x^2 - 8*x^3 +x*O(x^n))^(1/3) ), n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = x / Series_Reversion( x/(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) ).
(2) A(x) = 1 / B(x/A(x)) where B(x) = 1 / A(x/B(x)) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) equals the g.f. of A370145.
(3) A(x) = 1/C(27*x^6)^(1/3) + 3*x^2*C(27*x^6)^(1/3) - x, where C(x) = 1 + x*C(x)^2 = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).

A370779 Expansion of ( (1 + x)*(1 - 5*x)*(1 + 25*x) )^(1/3).

Original entry on oeis.org

1, 7, -84, 1020, -17220, 313068, -6075444, 122709468, -2553130020, 54317619660, -1175968479252, 25819593611196, -573476704909572, 12861006710141100, -290799326551852020, 6621725329384239516, -151707434284857934308, 3494405505576163607436
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2024

Keywords

Comments

The cube root of F(x) = (1 + x)*(1 - (3*k+2)*x)*(1 + (3*k+2)^2*x) is an integer series because F(x) == (1+x)*(1 + 2*x - 8*x^2) == (1+x)^3 (mod 9).

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(((1+x)*(1-5*x)*(1+25*x))^(1/3))

A370780 Expansion of ( (1 + x)*(1 - 17*x)*(1 + 289*x) )^(1/3).

Original entry on oeis.org

1, 91, -9828, 1535868, -294731892, 62322050700, -13990450587012, 3270320252339868, -787131217405990548, 193694053976566000812, -48497295306135216560292, 12313491783703337923916220, -3162498663877264843739477172
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2024

Keywords

Comments

The cube root of F(x) = (1 + x)*(1 - (3*k+2)*x)*(1 + (3*k+2)^2*x) is an integer series because F(x) == (1+x)*(1 + 2*x - 8*x^2) == (1+x)^3 (mod 9).

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(((1+x)*(1-17*x)*(1+289*x))^(1/3))

A370781 Expansion of 1 / ( (1 - x)*(1 + 2*x)*(1 - 4*x) )^(1/3).

Original entry on oeis.org

1, 1, 4, 10, 37, 121, 442, 1576, 5818, 21466, 80272, 301324, 1138762, 4320226, 16459132, 62904664, 241134553, 926678569, 3569385772, 13776307714, 53267766997, 206304355225, 800203300354, 3108008802064, 12086612436376, 47056902019336, 183400211694496
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1+2*x)*(1-4*x))^(1/3))
    
  • PARI
    a(n) = sum(k=0, n\2, (-9)^k*binomial(-1/3, k)*binomial(n, 2*k)); \\ Seiichi Manyama, Aug 18 2025

Formula

a(n) ~ 2^(2*n+1) / (Gamma(1/3) * 3^(2/3) * n^(2/3)). - Vaclav Kotesovec, Mar 10 2024
a(n) = Sum_{k=0..floor(n/2)} A004987(k) * binomial(n,2*k). - Seiichi Manyama, Aug 18 2025
Showing 1-8 of 8 results.