cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A370145 Expansion of ( (1 + x)*(1 - 2*x)*(1 + 4*x) )^(1/3).

Original entry on oeis.org

1, 1, -3, 3, -12, 30, -102, 318, -1083, 3657, -12747, 44715, -159222, 571332, -2068608, 7538664, -27646374, 101915850, -377496030, 1404077790, -5242135728, 19637862132, -73793090676, 278068062756, -1050503580534, 3977985415746, -15096209345958, 57403753019238, -218683959367908
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

The cube root of F(x) = (1 + x)*(1 - 2*x)*(1 + 4*x) = (1 + 3*x - 6*x^2 - 8*x^3) is an integer series because F(x) == (1+x)^3 (mod 9).

Examples

			G.f.: A(x) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 - 12747*x^10 + 44715*x^11 - 159222*x^12 + ...
where A(x)^3 = (1 + 3*x - 6*x^2 - 8*x^3).
RELATED SERIES.
The following infinite product equals the g.f. of A370015:
A(x)^3 * A(2*x^2)^3 * A(4*x^3)^3 * A(8*x^4)^3 * ... * A(2^(n-1)*x^n)^3 * ... = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ... by the Jacobi triple product identity.
If A(x) = 1/B(x/A(x)) then B(x) = 1/A(x/B(x)) begins
B(x) = 1 - x + 3*x^2 - 9*x^6 + 27*x^8 - 324*x^12 + 1215*x^14 - 18711*x^18 + 75816*x^20 - 1301265*x^24 + 5484996*x^26 - 100048689*x^30 + 431943435*x^32 - 8192222064*x^36 + ... + A370146(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Surd[(1+x)(1-2x)(1+4x),3],{x,0,30}],x] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    {a(n) = polcoeff( (1 + 3*x - 6*x^2 - 8*x^3 +x*O(x^n))^(1/3), n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = (1 + x)*(1 - 2*x)*(1 + 4*x) = (1 + 3*x - 6*x^2 - 8*x^3).
(2) Product_{n>=1} A( 2^(n-1)*x^n )^3 = Sum_{n>=0} 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2), which is the g.f. of A370015.
(3) A(x) = 1/B(x/A(x)) where B(x) = 1/A(x/B(x)) = x/Series_Reversion(x/A(x)) equals the g.f. of A370146.
a(n) ~ (-1)^(n+1) * 2^(2*n-1) / (3^(1/3) * Gamma(2/3) * n^(4/3)). - Vaclav Kotesovec, Feb 23 2024

A370019 Expansion of [ Sum_{n>=0} (-4)^n * (2*4^n + 1)/3 * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, -4, -16, -48, -384, -2816, -24384, -206336, -1815552, -16189440, -146777856, -1346648064, -12487131136, -116810932224, -1101080592384, -10447586845696, -99706199973888, -956400813293568, -9215587975397376, -89158545637244928, -865730439117078528, -8433936444598677504
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

The self-convolution cube equals A370018.

Examples

			G.f.: A(x) = 1 - 4*x - 16*x^2 - 48*x^3 - 384*x^4 - 2816*x^5 - 24384*x^6 - 206336*x^7 - 1815552*x^8 - 16189440*x^9 - 146777856*x^10 + ...
RELATED SERIES.
The cube of the g.f. A(x) equals the g.f. A370018 which starts as
A(x)^3 = 1 - 12*x + 176*x^3 - 2752*x^6 + 43776*x^10 - 699392*x^15 + 11186176*x^21 + ... + (-4)^n * (2*4^n + 1)/3 * x^(n*(n+1)/2) + ...
The reciprocal of the g.f. A(x) equals the g.f. of A370044, which begins
1/A(x) = 1 + 4*x + 32*x^2 + 240*x^3 + 2048*x^4 + 17920*x^5 + 163904*x^6 + 1526784*x^7 + 14473216*x^8 + 138743808*x^9 + ... + A370044(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A);
    A = sum(m=0, sqrtint(2*n+1), (-4)^m * (1 + 2*4^m)/3 * x^(m*(m+1)/2) +x*O(x^n))^(1/3);
    polcoeff(H=A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n / n^(4/3), where d = 10.39336299855957350315151176284030870108168399888... and c = -0.218294054014127126766352511836393819909572679... - Vaclav Kotesovec, Feb 24 2024

A370336 Expansion of [ Sum_{n>=0} 5^n * (2*4^n + 1)/3 * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, 5, -25, 300, -3000, 34375, -426750, 5539375, -73968750, 1010175000, -14043011250, 198006675000, -2824523453125, 40684553625000, -590871274218750, 8642318714253125, -127185323309250000, 1881843237600000000, -27976771190059687500, 417688301999460937500, -6259735680122821875000
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

Self-convolution cube equals A370335.

Examples

			G.f.: A(x) = 1 + 5*x - 25*x^2 + 300*x^3 - 3000*x^4 + 34375*x^5 - 426750*x^6 + 5539375*x^7 - 73968750*x^8 + 1010175000*x^9 - 14043011250*x^10 + ...
RELATED SERIES.
The cube of the g.f. A(x) yields the g.f. of A370335 starting as
A(x)^3 = 1 + 15*x + 275*x^3 + 5375*x^6 + 106875*x^10 + 2134375*x^15 + 42671875*x^21 + 853359375*x^28 + 17066796875*x^36 + ... + 5^n*(2*4^n + 1)/3 * x^(n*(n+1)/2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A);
    A = sum(m=0, sqrtint(2*n+1), 5^m*(2*4^m + 1)/3 * x^(m*(m+1)/2) +x*O(x^n))^(1/3);
    polcoeff(H=A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ (-1)^(n+1) * c * d^n / n^(4/3), where d = 16.061038491618401040959460250524051290971925631740259277535... and c = 0.25648790376068702946627569573532916303248367815529074... - Vaclav Kotesovec, Feb 24 2024

A370015 Expansion of A(x) = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).

Original entry on oeis.org

1, 3, 0, 22, 0, 0, 344, 0, 0, 0, 10944, 0, 0, 0, 0, 699392, 0, 0, 0, 0, 0, 89489408, 0, 0, 0, 0, 0, 0, 22907191296, 0, 0, 0, 0, 0, 0, 0, 11728213508096, 0, 0, 0, 0, 0, 0, 0, 0, 12009621912813568, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24595670493070098432, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100743830310818104213504
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2024

Keywords

Comments

Equals the self-convolution cube of A370016.

Examples

			G.f.: A(x) = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The g.f. A(x) equals the infinite product
A(x) = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3) * (1 + 6*x^2 - 24*x^4 - 64*x^6) * (1 + 12*x^3 - 96*x^6 - 512*x^9) * (1 + 24*x^4 - 384*x^8 - 4096*x^12 ) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15) * ...
Notice that the cube root of A(x) yields an integer series
A(x)^(1/3) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + ... + A370016(n)*x^n + ...
		

Crossrefs

Cf. A370016.

Programs

  • PARI
    {a(n) = my(A);
    A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n));
    polcoeff(H=A, n)}
    for(n=0, 66, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).
(2) A(x) = Product_{n>=1} (1 + 2^(n-1)*x^n) * (1 - 2^n*x^n) * (1 + 2^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 2^(n-1)*x^n ), where F(x) = (1 + 3*x - 6*x^2 - 8*x^3).

A370148 Expansion of A(x) = [ Sum_{n>=0} (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, 19, -361, 4896, -186048, 6361181, -265706784, 10569322565, -439680983904, 18480280546656, -790074277452000, 34174424338394976, -1494143747622128305, 65898152303725266336, -2928713377590693411552, 131019840536990930329051, -5895300394280706457304448, 266614701826937350737301056
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Examples

			G.f.: A(x) = 1 + 19*x - 361*x^2 + 4896*x^3 - 186048*x^4 + 6361181*x^5 - 265706784*x^6 + 10569322565*x^7 - 439680983904*x^8 + 18480280546656*x^9 + ...
The cube of g.f. A(x) equals the infinite product
A(x)^3 = (1 + x)*(1 + 7*x)*(1 + 7^2*x) * (1 - 7*x^2)*(1 - 7^2*x^2)*(1 - 7^3*x^2) * (1 + 7^2*x^3)*(1 + 7^3*x^3)*(1 + 7^4*x^3) * (1 - 7^3*x^4)*(1 - 7^4*x^4)*(1 - 7^5*x^4) * ...
Notice that the cube of A(x) yields the series
A(x)^3 = 1 + 57*x - 19607*x^3 - 47079151*x^6 + 791260232049*x^10 + 93090977300134793*x^15 - 76664422756665399911143*x^21 + ... + (-7)^(n*(n-1)/2)*(1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A);
    A = prod(m=1, n+1, (1 + (-7)^(m-1)*x^m) * (1 - (-7)^m*x^m) * (1 + (-7)^(m+1)*x^m) +x*O(x^n))^(1/3);
    polcoeff(H=A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = Sum_{n>=0} (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2).
(2) A(x)^3 = Product_{n>=1} (1 + (-7)^(n-1)*x^n) * (1 - (-7)^n*x^n) * (1 + (-7)^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 2^(n-1)*x^n ), where F(x) = (1 + 57*x + 399*x^2 + 343*x^3)^(1/3) which is the g.f. of A370147.
a(n) ~ (-1)^(n+1) * c * 7^(2*n) / n^(4/3), where c = 0.2168488573077459727164856825904737112... - Vaclav Kotesovec, Feb 24 2024

A370334 Expansion of [ Sum_{n>=0} 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, 37, -1369, 133632, -9888768, 845367083, -78838949376, 7721334144755, -776624602305024, 79868229118115328, -8362877755373222400, 888226662691859185152, -95442299152209579505105, 10355840499178710443340288, -1132966823558169033184762368, 124832961812953439236127605357
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2024

Keywords

Examples

			G.f.: A(x) = 1 + 37*x - 1369*x^2 + 133632*x^3 - 9888768*x^4 + 845367083*x^5 - 78838949376*x^6 + 7721334144755*x^7 - 776624602305024*x^8 + ...
where the cube of g.f. A(x) yields the series
A(x)^3 = 1 + 111*x + 147631*x^3 + 2161452161*x^6 + 348104014265601*x^10 + 616687495357008127151*x^15 + 12017494675541950940487123311*x^21 + ... + 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2) + ...
The cube of g.f. A(x) also equals the infinite product
A(x)^3 = (1 + x)*(1 - 11*x)*(1 + 11^2*x) * (1 + 11*x^2)*(1 - 11^2*x^2)*(1 + 11^3*x^2) * (1 + 11^2*x^3)*(1 - 11^3*x^3)*(1 + 11^4*x^3) * (1 + 11^3*x^4)*(1 - 11^4*x^4)*(1 + 11^5*x^4) * ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A); A = prod(m=1, n+1, (1 + 11^(m-1)*x^m) * (1 - 11^m*x^m) * (1 + 11^(m+1)*x^m) +x*O(x^n))^(1/3); polcoeff(H=A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = Sum_{n>=0} 11^(n*(n-1)/2) * (1 + 11^(2*n+1))/12 * x^(n*(n+1)/2).
(2) A(x)^3 = Product_{n>=1} (1 + 11^(n-1)*x^n) * (1 - 11^n*x^n) * (1 + 11^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 11^(n-1)*x^n ), where F(x) = (1 + 111*x - 1221*x^2 - 1331*x^3)^(1/3).
a(n) ~ (-1)^(n+1) * c * 11^(2*n) / n^(4/3), where c = 0.2588865455859866840901787578907966... - Vaclav Kotesovec, Feb 27 2024

A370146 Expansion of x / Series_Reversion( x/(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) ).

Original entry on oeis.org

1, -1, 3, 0, 0, 0, -9, 0, 27, 0, 0, 0, -324, 0, 1215, 0, 0, 0, -18711, 0, 75816, 0, 0, 0, -1301265, 0, 5484996, 0, 0, 0, -100048689, 0, 431943435, 0, 0, 0, -8192222064, 0, 35942240565, 0, 0, 0, -700434986472, 0, 3108770417700, 0, 0, 0, -61805774132388, 0, 276711654879477
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2024

Keywords

Comments

The cube root of F(x) = (1 + 3*x - 6*x^2 - 8*x^3) = (1 + x)*(1 - 2*x)*(1 + 4*x) is an integer series because F(x) == (1+x)^3 (mod 9).

Examples

			G.f.: A(x) = = 1 - x + 3*x^2 - 9*x^6 + 27*x^8 - 324*x^12 + 1215*x^14 - 18711*x^18 + 75816*x^20 - 1301265*x^24 + 5484996*x^26 - 100048689*x^30 + ...
RELATED SERIES.
If A(x) = 1/B(x/A(x)) then B(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) begins
B(x) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 - 12747*x^10 + 44715*x^11 + ... + A370145(n)*x^n + ...
A(x) = 1/D(x^6) + 3*x^2*D(x^6) - x, where
1/D(x) = 1 - 9*x - 324*x^2 - 18711*x^3 - 1301265*x^4 - 100048689*x^5 - 8192222064*x^6 - 700434986472*x^7 + ...
and D(x) = ( (1-sqrt(1-108*x))/(54*x) )^(1/3) begins
D(x) = 1 + 9*x + 405*x^2 + 25272*x^3 + 1828332*x^4 + 143981145*x^5 + 11980746855*x^6 + 1036256805900*x^7 + ... + 3^n*A008931(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( x/serreverse( x/(1 + 3*x - 6*x^2 - 8*x^3 +x*O(x^n))^(1/3) ), n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = x / Series_Reversion( x/(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) ).
(2) A(x) = 1 / B(x/A(x)) where B(x) = 1 / A(x/B(x)) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) equals the g.f. of A370145.
(3) A(x) = 1/C(27*x^6)^(1/3) + 3*x^2*C(27*x^6)^(1/3) - x, where C(x) = 1 + x*C(x)^2 = (1-sqrt(1-4*x))/(2*x) is the Catalan function (A000108).

A370761 Expansion of Product_{k>=1} (1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, 5, 14, 70, 196, 640, 2248, 6480, 19072, 56000, 169792, 466560, 1327104, 3642880, 10030080, 27776000, 74541056, 199065600, 531505152, 1401405440, 3672801280, 9674588160, 25018564608, 64701071360, 166363136000, 426159636480, 1084287352832, 2756737761280, 6979072294912
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2^(k+1)*x^k)*(1 + 2^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (Pi^2/3 + log(2)^2)^(1/4) * 2^(n - 3/4) * exp(sqrt(2*(Pi^2/3 + log(2)^2)*n)) / (3*sqrt(Pi)*n^(3/4)).

A370765 a(n) = 9^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/3).

Original entry on oeis.org

1, 15, 153, 11295, 31968, 5289300, 41957514, 3216919050, -21009764691, 2153132775315, -16978376482767, 1659596014366335, -35929151338082922, 1473739361689662990, -38968782475183427016, 1541715187631618436300, -46858796372722560413526, 1615119529247884664988030
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*(9*x)^k)*(1+2^(k-1)*(9*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, 2*x]*QPochhammer[-1/2, 2*x]/9)^(1/3), {x, 0, nmax}], x] * 9^Range[0, nmax]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x]/9)^(1/3), {x, 0, nmax}], x] * 18^Range[0, nmax]

Formula

G.f.: Product_{k>=1} ((1 + 2^(k+1)*(9*x)^k) * (1 + 2^(k-1)*(9*x)^k))^(1/3).
a(n) ~ (-1)^(n+1) * c * 36^n / n^(4/3), where c = 0.244280405759762854740979712556383125782589356973734984...
Showing 1-9 of 9 results.