cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370016 Expansion of A(x) = [ Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) ]^(1/3).

Original entry on oeis.org

1, 1, -1, 9, -18, 44, -54, 350, -1359, 3789, -9585, 42489, -163900, 543474, -1933092, 7499404, -27668718, 100329714, -371138346, 1394575578, -5236658316, 19587163968, -73536845444, 278088068628, -1052804678958, 3985553554074, -15132118280498, 57617112474306, -219680808219216
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2024

Keywords

Comments

Equals the self-convolution cube root of A370015.

Examples

			G.f.: A(x) = 1 + x - x^2 + 9*x^3 - 18*x^4 + 44*x^5 - 54*x^6 + 350*x^7 - 1359*x^8 + 3789*x^9 - 9585*x^10 + 42489*x^11 - 163900*x^12 + 543474*x^13 - 1933092*x^14 + 7499404*x^15 + ...
where the cube of g.f. A(x) yields the series
A(x)^3 = 1 + 3*x + 22*x^3 + 344*x^6 + 10944*x^10 + 699392*x^15 + 89489408*x^21 + 22907191296*x^28 + 11728213508096*x^36 + ... + 2^(n*(n-1)/2)*(1 + 2^(2*n+1))/3 * x^(n*(n+1)/2) + ...
The cube of g.f. A(x) also equals the infinite product
A(x)^3 = (1 + x)*(1 - 2*x)*(1 + 2^2*x) * (1 + 2*x^2)*(1 - 2^2*x^2)*(1 + 2^3*x^2) * (1 + 2^2*x^3)*(1 - 2^3*x^3)*(1 + 2^4*x^3) * (1 + 2^3*x^4)*(1 - 2^4*x^4)*(1 + 2^5*x^4) * ...
Equivalently,
A(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3) * (1 + 6*x^2 - 24*x^4 - 64*x^6)^(1/3) * (1 + 12*x^3 - 96*x^6 - 512*x^9)^(1/3) * (1 + 24*x^4 - 384*x^8 - 4096*x^12)^(1/3) * (1 + 48*x^5 - 1536*x^10 - 32768*x^15)^(1/3) * ...
where
(1 + 3*x - 6*x^2 - 8*x^3)^(1/3) = 1 + x - 3*x^2 + 3*x^3 - 12*x^4 + 30*x^5 - 102*x^6 + 318*x^7 - 1083*x^8 + 3657*x^9 + ... + A370145(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    Round[CoefficientList[Series[QPochhammer[-2, 2*x]^(1/3) * QPochhammer[-1/2, 2*x]^(1/3) * QPochhammer[2*x]^(1/3)*2^(1/3)/3^(2/3), {x, 0, 30}], x]] (* Vaclav Kotesovec, Feb 23 2024 *)
  • PARI
    {a(n) = my(A);
    A = prod(m=1, n+1, (1 + 2^(m-1)*x^m) * (1 - 2^m*x^m) * (1 + 2^(m+1)*x^m) +x*O(x^n))^(1/3);
    polcoeff(H=A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = Sum_{n>=0} 2^(n*(n-1)/2) * (1 + 2^(2*n+1))/3 * x^(n*(n+1)/2).
(2) A(x)^3 = Product_{n>=1} (1 + 2^(n-1)*x^n) * (1 - 2^n*x^n) * (1 + 2^(n+1)*x^n), by the Jacobi triple product identity.
(3) A(x) = Product_{n>=1} F( 2^(n-1)*x^n ), where F(x) = (1 + 3*x - 6*x^2 - 8*x^3)^(1/3).
a(n) ~ c * (-1)^(n+1) * 4^n / n^(4/3), where c = 0.260357663494676514371316... - Vaclav Kotesovec, Feb 23 2024
Radius of convergence r = 1/4 (from Vaclav Kotesovec's formula) and A(r) = ( Sum_{n>=0} (1/2^n + 2*2^n)/3 * 1/2^(n*(n+1)/2) )^(1/3) = ( Product_{n>=1} (1 + 1/2^n)*(1 - 1/4^(n+1)) )^(1/3) = 1.298389210904220681888354941631161162163... - Paul D. Hanna, Mar 07 2024

A370761 Expansion of Product_{k>=1} (1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, 5, 14, 70, 196, 640, 2248, 6480, 19072, 56000, 169792, 466560, 1327104, 3642880, 10030080, 27776000, 74541056, 199065600, 531505152, 1401405440, 3672801280, 9674588160, 25018564608, 64701071360, 166363136000, 426159636480, 1084287352832, 2756737761280, 6979072294912
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + 2^(k+1)*x^k)*(1 + 2^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (Pi^2/3 + log(2)^2)^(1/4) * 2^(n - 3/4) * exp(sqrt(2*(Pi^2/3 + log(2)^2)*n)) / (3*sqrt(Pi)*n^(3/4)).

A370764 a(n) = 4^n * [x^n] Product_{k>=1} ((1 + 2^(k+1)*x^k) * (1 + 2^(k-1)*x^k))^(1/2).

Original entry on oeis.org

1, 10, 62, 1620, 6966, 157580, 1284012, 19189160, 73908774, 2233414620, 9656822916, 287668788120, -324007115716, 40151699854200, -199460032590312, 7130611518222160, -64971542557275642, 1292318115470489340, -15433712240157937260, 265667290368470451000, -3624776372747687578668
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2024

Keywords

Comments

In general, if d > 1 and g.f. = Product_{k>=1} ((1 + d^(k+1)*x^k) * (1 + d^(k-1)*x^k))^(1/2), then a(n) ~ (-1)^(n+1) * QPochhammer(-1/d) * d^(2*n) / (2*sqrt((1 + 1/d)*Pi) * n^(3/2)).

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+2^(k+1)*x^k)*(1+2^(k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[(1+2^(3*k+1)*x^k)*(1+2^(3*k-1)*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(2*QPochhammer[-2, x]*QPochhammer[-1/2, x])^(1/2)/3, {x, 0, nmax}], x] * 8^Range[0, nmax]

Formula

G.f.: Product_{k>=1} ((1 + 2^(3*k+1)*x^k) * (1 + 2^(3*k-1)*x^k))^(1/2).
a(n) ~ (-1)^(n+1) * c * 16^n / n^(3/2), where c = QPochhammer(-1/2) / sqrt(6*Pi) = 0.278865402428524528968820654198674...
Showing 1-3 of 3 results.