A370162 Semiprimes that are the sum of two successive semiprimes and also the sum of three successive semiprimes.
134, 597, 614, 898, 982, 998, 1649, 2045, 2078, 2126, 2386, 2705, 2855, 2935, 3394, 3418, 3899, 5533, 5686, 5959, 6982, 7721, 8567, 8986, 9182, 9722, 9998, 10342, 10587, 10862, 10942, 11015, 11363, 11602, 11667, 11962, 13238, 13606, 14054, 14138, 14506, 14614, 15658, 15802, 15898, 16138, 16382
Offset: 1
Keywords
Examples
a(3) = 614 is a term because 614 = 2 * 307 is a semiprime, A001358(98) = 305 = 5 * 61 and A001358(99) = 309 = 3 * 103 are two successive semiprimes whose sum is 614, and A001358(65) = 203 = 7 * 29, A001358(66) = 205 = 5 * 41 and A001358(67) = 206 = 2 * 103 are three successive semiprimes whose sum is 614.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^5: # for terms <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P): SP:= 0: for i from 1 while P[i]^2 <= N do m:= ListTools:-BinaryPlace(P, N/P[i]); SP:= SP, op(P[i]*P[i..m]); od: SP:= sort([SP]): SS:= ListTools:-PartialSums(SP): SS2:= {seq(SS[i]-SS[i-2],i=3..nops(SS))}: SS3:= {seq(SS[i]-SS[i-3],i=4..nops(SS))}: A:=SS2 intersect SS3 intersect convert(SP,set): sort(convert(A,list));