cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371024 a(n) is the least prime p such that p + 4*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.

Original entry on oeis.org

2, 3, 29, 5, 23, 269, 272879, 149, 61463, 929, 7426253, 2609, 233, 59, 78977932125503
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Mar 08 2024

Keywords

Comments

a(15) > 3277860277, a(16) > 3103623446, a(17) > 2853255995,
a(18) = 653, a(19) > 2480173428, a(20) > 2058783580, a(21) > 1894529774, a(22) > 1896261075, a(23) > 1836831342, a(24), ..., a(100) > 15000000.
Other than a(1)-a(14) and a(18), no terms < 24870000007. - Michael S. Branicky, Apr 12 2024
From David A. Corneth, Apr 12 2024: (Start)
Using remainders mod q we can restrict the search. For example for a(15) a term can only be 2, 3 or 5 (mod 7). Or maybe 7 itself. If a(15) = p == 1 (mod 7) then for k = 3 we have q + 4*3*(3+1) == 0 mod 7. Similarily number 0, 4 and 6 (mod 7) produce a multiple of 7 where they should not.
Doing so for various primes mod q we can reduce the number of remainders and with that the search space by combining the possible remainders using the Chinese Remainder Theorem (CRT).
So the possible remainders mod 2 are 1. The possible remainders mod 3 are 2. Using the CRT, a number of the form 1 (mod 2) and 2 (mod 3) simultaneously is of the form 5 (mod 6).
a(15) > 2.3*10^13 if it exists. (End)

Crossrefs

Programs

  • Maple
    f:= proc(p) local k;
      for k from 1 while isprime(p+k*(k+1)*4) do od:
      k
    end proc:
    A:= Vector(12): count:= 0:
    for i from 1 while count < 12 do
      v:= f(ithprime(i));
      if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
    od:
    convert(A,list);
  • Mathematica
    Table[p=1;m=4;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}]
  • PARI
    isok(p, n) = for (k=0, n-1, if (! isprime(p + 4*k*(k+1)), return(0))); return (!isprime(p + 4*n*(n+1)));
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p; \\ Michel Marcus, Mar 12 2024
    
  • Perl
    use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 4*$n*($n+1)) } sieve_prime_cluster($lo, $hi, map { 4*$*($+1) } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " }; # Daniel Suteu, Dec 17 2024
  • Python
    from sympy import isprime, nextprime
    from itertools import count, islice
    def f(p):
        k = 1
        while isprime(p+4*k*(k+1)): k += 1
        return k
    def agen(verbose=False): # generator of terms
        adict, n, p = dict(), 1, 1
        while True:
            p = nextprime(p)
            v = f(p)
            if v not in adict:
                adict[v] = p
                if verbose: print("FOUND", v, p)
            while n in adict:
                yield adict[n]; n += 1
    print(list(islice(agen(), 14))) # Michael S. Branicky, Apr 12 2024
    

Extensions

a(15) from Daniel Suteu, Dec 17 2024

A376675 a(n) is the least prime p such that p + 7*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.

Original entry on oeis.org

2, 3, 59, 5, 89, 599, 3329, 617, 269, 21107, 9833477, 19497833669, 215830859597, 111338387, 251704297005767, 17
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Oct 01 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(p) local k;
      for k from 1 while isprime(p+k*(k+1)*7) do od:
      k
    end proc:
    A:= Vector(12): count:= 0:
    for i from 1 while count < 12 do
      v:= f(ithprime(i));
      if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
    od:
    convert(A,list);
  • Mathematica
    Table[p=1;m=7;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}]
  • PARI
    isok(p, n) = for (k=0, n-1, if (! isprime(p + 7*k*(k+1)), return(0))); return (!isprime(p + 7*n*(n+1)));
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p;
    
  • Perl
    use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 7*$n*($n+1)) } sieve_prime_cluster($lo, $hi, map { 7*$*($+1) } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " }; # Daniel Suteu, Oct 04 2024

Extensions

a(11)-a(12) from Hugo Pfoertner, Oct 01 2024
a(13)-a(14) from Hugo Pfoertner, Oct 03 2024
a(15)-a(16) from Daniel Suteu, Oct 04 2024

A378839 a(n) is the least prime p such that p + 8*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.

Original entry on oeis.org

2, 3, 151, 181, 13, 811, 23671, 92221, 45417481, 5078503, 4861, 20379346831, 12180447943, 31, 10347699089473
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Dec 09 2024

Keywords

Comments

No further terms < 2.5*10^11. - Michael S. Branicky, Dec 16 2024

Crossrefs

Programs

  • Maple
    f:= proc(p) local k;
      for k from 1 while isprime(p+k*(k+1)*8) do od:
      k
    end proc:
    A:= Vector(12): count:= 0:
    for i from 1 while count < 12 do
      v:= f(ithprime(i));
      if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
    od:
    convert(A,list);
  • Mathematica
    Table[p=1;m=8;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}]
  • PARI
    isok(p, n) = for (k=0, n-1, if (! isprime(p + 8*k*(k+1)), return(0))); return (!isprime(p + 8*n*(n+1)));
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p;
    
  • Perl
    use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 8*$n*($n+1)) } sieve_prime_cluster($lo, $hi, map { 8*$*($+1) } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " }; #

Extensions

a(12)-a(14) from Michael S. Branicky, Dec 15 2024
a(15) from Daniel Suteu, Dec 17 2024

A378841 a(n) is the least prime p such that p + 9*k*(k+1) is prime for 0 <= k <= n-1 but not for k=n.

Original entry on oeis.org

2, 11, 13, 5, 19, 173, 3163, 83, 21013, 878359, 3676219, 239, 43, 5201390418463, 86927887467919
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Dec 09 2024

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(p) local k;
      for k from 1 while isprime(p+k*(k+1)*9) do od:
      k
    end proc:
    A:= Vector(12): count:= 0:
    for i from 1 while count < 12 do
      v:= f(ithprime(i));
      if A[v] = 0 then count:= count+1; A[v]:= ithprime(i) fi
    od:
    convert(A,list);
  • Mathematica
    Table[p=1;m=9;Monitor[Parallelize[While[True,If[And[MemberQ[PrimeQ[Table[p+m*k*(k+1),{k,0,n-1}]],False]==False,PrimeQ[p+m*n*(n+1)]==False],Break[]];p++];p],p],{n,1,10}]
  • PARI
    isok(p, n) = for (k=0, n-1, if (! isprime(p + 9*k*(k+1)), return(0))); return (!isprime(p + 9*n*(n+1)));
    a(n) = my(p=2); while (!isok(p, n), p=nextprime(p+1)); p;
    
  • Perl
    use ntheory qw(:all); sub a { my $n = $[0]; my $lo = 2; my $hi = 2*$lo; while (1) { my @terms = grep { !is_prime($ + 9*$n*($n+1)) } sieve_prime_cluster($lo, $hi, map { 9*$*($+1) } 1 .. $n-1); return $terms[0] if @terms; $lo = $hi+1; $hi = 2*$lo; } }; $| = 1; for my $n (1..100) { print a($n), ", " }; #

Extensions

a(14) from Daniel Suteu, Dec 17 2024
a(15) from Daniel Suteu, Dec 22 2024
Showing 1-4 of 4 results.