cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A241885 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).

Original entry on oeis.org

1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197
Offset: 0

Views

Author

Jitender Singh, May 01 2014

Keywords

Comments

For g(n) see A242225(n).
The old definition was "Numerator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024

Examples

			For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
		

Crossrefs

Cf. A242225 (denominators), A126156, A242233.

Programs

  • Maple
    g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
    if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f,m)*g(f,n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
    a := n -> numer(g(bernoulli, n));
    seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
  • Mathematica
    a := 1
    g[0] := Sqrt[f[0]]
    f[k_] := BernoulliB[k]
    g[1] := f[1]/(2 g[0]^1);
    g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
    Table[Factor[g[k]], {k, 0, 15}] // TableForm
    (* Alternative: *)
    Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}]  (* Peter Luschny, Feb 18 2024 *)
  • PARI
    a(n)=numerator(sum(k=0,n,binomial(-1/2,k)*binomial(n+1/2,n-k)*stirling(n+k,k,2)/binomial(n+k,k))) \\ Tani Akinari, Oct 08 2024

Formula

Theorem: a(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k > 1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0) = f(0)^(1/m);
g(1) = f(1)/(m*g(0)^(m-1));
g(k) = 1/(m*g(0)^(m-1))*(f(k) - Sum_{k_1+...+k_m=k,k_i= 2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.
E.g.f: sqrt(x/(exp(x)-1)); take numerators. - Peter Luschny, May 08 2014
a(n) = numerator(Sum_{k=0..n} binomial(-1/2,k)*binomial(n+1/2,n-k)*Stirling2(n+k,k)/binomial(n+k,k)). - Tani Akinari, Oct 08 2024

Extensions

Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst

A242225 Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives g(n).

Original entry on oeis.org

1, 4, 48, 64, 1280, 3072, 86016, 49152, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 12079595520, 3221225472, 73014444032, 51539607552, 137095356088320, 5772436045824, 3809807790243840, 725677674332160, 2023101395107840, 3166593487994880
Offset: 0

Views

Author

Jitender Singh, May 08 2014

Keywords

Comments

For f(n) see A241885(n).
The old definition was "Denominator of (B_n)^(1/2) in the Cauchy type product (sometimes known as binomial transform) where B_n is the n-th Bernoulli number".
The Nørlund polynomials N(a, n, x) with parameter a = 1/2 evaluated at x = 0 give the rational values. - Peter Luschny, Feb 18 2024

Examples

			For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=4.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=86016.
		

Crossrefs

Programs

  • Maple
    g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
    if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f, m)*g(f, n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
    a := n -> denom(g(bernoulli, n));
    seq(a(n), n=0..23);
  • Mathematica
    a := 1
    g[0] := Sqrt[f[0]]
    f[k_] := BernoulliB[k]
    g[1] := f[1]/(2 g[0]^1);
    g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
    Table[Denominator[Factor[g[k]]], {k, 0, 15}] // TableForm
    (* Alternative: *)
    Table[Denominator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)

Formula

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).
For any arithmetic function f and a positive integer k>1, define the k-th root of f to be the arithmetic function g such that g*g*...*g(k times)=f and is determined by the following recursive formula:
g(0)= f(0)^{1/m};
g(1)= f(1)/(mg(0)^(m-1));
g(k)= 1/(m g(0)^{m-1})*(f(k)-sum_{k_1+...+k_m=k,k_i=2.
This formula is applicable for any rational root of an arithmetic function with respect to the Cauchy type product.

Extensions

Simpler definition from N. J. A. Sloane, Apr 24 2022 at the suggestion of David Broadhurst.

A370417 a(n) = denominator(N(1/2, n, 1)) where N(a, n, x) is the n-th Nørlund polynomial.

Original entry on oeis.org

1, 4, 48, 64, 1280, 1024, 86016, 16384, 2949120, 1310720, 11534336, 4194304, 1526726656, 2348810240, 2415919104, 1073741824, 73014444032, 17179869184, 27419071217664, 1924145348608, 3809807790243840, 241892558110720, 404620279021568, 351843720888320, 823314306878668800
Offset: 0

Views

Author

Peter Luschny, Feb 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator@NorlundB[n, 1/2, 1], {n, 0, 24}]

A370414 T(n, k) = numerator([x^n] N(1/2, n, x)) where N(a, n, x) is the n-th Nørlund polynomial.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, 1, 1, -3, 1, -3, 1, 1, -1, 1, -19, -3, 5, 5, -5, 1, 79, -19, -9, 5, 5, -3, 1, 275, 79, -133, -21, 35, 7, -7, 1, -2339, 275, 79, -133, -21, 7, 7, -2, 1, -11813, -2339, 825, 79, -399, -189, 21, 3, -9, 1, 14217, -11813, -2339, 1375, 395, -399, -63, 15, 15, -5, 1
Offset: 0

Views

Author

Peter Luschny, Feb 18 2024

Keywords

Comments

Nørlund polynomials N(a, n, x) are generalizations of the powers 1, x, x^2, ... as well as of the Bernoulli polynomials 1, x - 1/2, x^2 - x + 1/6, ...
Parameter a = 0 gives the first case and a = 1 the second case. Here, we consider the case a = 1/2. You can think of it as a kind of square root of the Bernoulli polynomials. We give the coefficients of these polynomials, this sequence for the numerators, and A370415 for the denominators.
We also give the values of these polynomials at the point x = 1, which are analogous to the Bernoulli numbers; A370416 for the numerators, and A370417 for the denominators.

Examples

			The lists of rational coefficients start:
  [0] [        1]
  [1] [     -1/4,        1]
  [2] [     1/48,     -1/2,         1]
  [3] [     1/64,     1/16,      -3/4,       1]
  [4] [  -3/1280,     1/16,       1/8,      -1,     1]
  [5] [ -19/3072,   -3/256,      5/32,    5/24,  -5/4,    1]
  [6] [ 79/86016,  -19/512,    -9/256,    5/16,  5/16, -3/2,    1]
  [7] [275/49152, 79/12288, -133/1024, -21/256, 35/64, 7/16, -7/4, 1]
		

Crossrefs

Programs

  • Maple
    egf := (t/(exp(t) - 1))^(1/2)*exp(z*t):
    ser := series(egf, t, 16): ct := n -> n!*coeff(ser, t, n):
    seq(seq(numer(coeff(ct(n), z, k)), k = 0..n), n = 0..10);
  • Mathematica
    Table[Numerator@CoefficientList[NorlundB[n, 1/2, x], x] , {n, 0, 10}] // Flatten

Formula

T(n, k) = numerator( n! * [z^k] [t^n] (t / (exp(t) - 1))^(1/2)*exp(z*t) ).

A370415 T(n, k) = denominator([x^n] N(1/2, n, x)) where N(a, n, x) is the n-th Nørlund polynomial.

Original entry on oeis.org

1, 4, 1, 48, 2, 1, 64, 16, 4, 1, 1280, 16, 8, 1, 1, 3072, 256, 32, 24, 4, 1, 86016, 512, 256, 16, 16, 2, 1, 49152, 12288, 1024, 256, 64, 16, 4, 1, 2949120, 6144, 3072, 384, 128, 8, 12, 1, 1, 1310720, 327680, 4096, 1024, 512, 640, 16, 4, 4, 1, 11534336, 131072, 65536, 2048, 2048, 256, 128, 8, 16, 2, 1
Offset: 0

Views

Author

Peter Luschny, Feb 18 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Denominator@CoefficientList[NorlundB[n, 1/2, x], x] , {n, 0, 10}] // Flatten
Showing 1-5 of 5 results.