cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370469 Triangle read by columns where T(n,k) is the number of points in Z^n such that |x1| + ... + |xn| = k, |x1|, ..., |xn| > 0.

Original entry on oeis.org

2, 2, 4, 2, 8, 8, 2, 12, 24, 16, 2, 16, 48, 64, 32, 2, 20, 80, 160, 160, 64, 2, 24, 120, 320, 480, 384, 128, 2, 28, 168, 560, 1120, 1344, 896, 256, 2, 32, 224, 896, 2240, 3584, 3584, 2048, 512, 2, 36, 288, 1344, 4032, 8064, 10752, 9216, 4608, 1024
Offset: 1

Views

Author

Shel Kaphan, Mar 30 2024

Keywords

Comments

T(n,k) is the number of points on the n-dimensional cross polytope with facets at distance k from the origin which have no coordinate equal to 0.
T(n,n) = 2^n. The (n-1)-dimensional simplex at distance n from the origin in Z^n has exactly 1 point with no zero coordinates, at (1,1,...,1). There are 2^n (n-1)-dimensional simplexes at distance n from the origin as part of the cross polytope in Z^n. (The lower dimensional facets do not count as they have at least one 0 coordinate.)
T(2*n,3*n) = T(2*n+1,3*n), and this is A036909.

Examples

			 n\k 1 2 3  4  5   6   7    8    9    10    11    12     13     14      15
   -----------------------------------------------------------------------
 1 | 2 2 2  2  2   2   2    2    2     2     2     2      2      2       2
 2 |   4 8 12 16  20  24   28   32    36    40    44     48     52      56
 3 |     8 24 48  80 120  168  224   288   360   440    528    624     728
 4 |       16 64 160 320  560  896  1344  1920  2640   3520   4576    5824
 5 |          32 160 480 1120 2240  4032  6720 10560  15840  22880   32032
 6 |              64 384 1344 3584  8064 16128 29568  50688  82368  128128
 7 |                 128  896 3584 10752 26880 59136 118272 219648  384384
 8 |                      256 2048  9216 30720 84480 202752 439296  878592
 9 |                           512  4608 23040 84480 253440 658944 1537536
10 |                                1024 10240 56320 225280 732160 2050048
11 |                                      2048 22528 135168 585728 2050048
12 |                                            4096  49152 319488 1490944
13 |                                                   8192 106496  745472
14 |                                                         16384  229376
15 |                                                                 32768
The cross polytope in Z^3 (the octahedron) with points at distance 3 from the origin has 8 triangle facets, each with edge length 4. There is one point in the center of each triangle with coordinates (+-1,+-1,+-1).
		

Crossrefs

Cf. A033996, A333714 (n=3)
Cf. A102860 (n=4).
Cf. A036289, A097064, A134401 (+1-diagonal).
Cf. A001815 (+2-diagonal).
Cf. A371064.
Cf. A036909.
2 * A013609.

Programs

  • Mathematica
    T[n_,k_]:=Binomial[k-1,n-1]*2^n; Table[T[n,k],{k,10},{n,k}]//Flatten
  • Python
    from math import comb
    def A370469_T(n,k): return comb(k-1,n-1)<Chai Wah Wu, Apr 25 2024

Formula

T(n,k) = binomial(k-1,n-1)*2^n.
G.f.: 2*x*y/(1 - y - 2*x*y). - Stefano Spezia, Apr 27 2024