A091980
Recursive sequence; one more than maximum of products of pairs of previous terms with indices summing to current index.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 16, 26, 36, 56, 81, 131, 183, 287, 417, 677, 937, 1457, 2107, 3407, 4759, 7463, 10843, 17603, 24373, 37913, 54838, 88688, 123892, 194300, 282310, 458330, 634350, 986390, 1426440, 2306540, 3221844, 5052452, 7340712, 11917232, 16500522
Offset: 1
- A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Graphs Combin., 28 (2012), 265-275.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f->
1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> b(n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2019
-
a[n_] := a[n] = 1 + Max[Table[a[i] a[n-i], {i, n-1}]]; a[1] = 1;
Array[a, 50] (* Jean-François Alcover, Apr 30 2020 *)
A372640
Number T(n,k) of defective (binary) heaps on n elements from the set {0,1} where k ancestor-successor pairs do not have the correct order; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 2, 3, 1, 5, 2, 1, 7, 4, 3, 2, 11, 6, 7, 5, 2, 1, 16, 13, 12, 8, 10, 3, 2, 26, 22, 23, 14, 21, 10, 9, 2, 1, 36, 36, 39, 33, 33, 28, 26, 13, 9, 2, 1, 56, 54, 67, 61, 60, 59, 56, 37, 34, 11, 13, 2, 2, 81, 99, 111, 96, 117, 112, 107, 96, 76, 53, 36, 20, 14, 4, 2
Offset: 0
T(4,0) = 7: 0000, 1000, 1010, 1100, 1101, 1110, 1111.
T(4,1) = 4: 0010, 0100, 1001, 1011.
T(4,2) = 3: 0001, 0101, 0110.
T(4,3) = 2: 0011, 0111.
(The examples use max-heaps.)
Triangle T(n,k) begins:
1;
2;
3, 1;
5, 2, 1;
7, 4, 3, 2;
11, 6, 7, 5, 2, 1;
16, 13, 12, 8, 10, 3, 2;
26, 22, 23, 14, 21, 10, 9, 2, 1;
36, 36, 39, 33, 33, 28, 26, 13, 9, 2, 1;
56, 54, 67, 61, 60, 59, 56, 37, 34, 11, 13, 2, 2;
81, 99, 111, 96, 117, 112, 107, 96, 76, 53, 36, 20, 14, 4, 2;
...
-
b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->
expand(b(f, t)*b(n-1-f, t)*x^t+b(f, t+1)*b(n-1-f, t+1)
))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..14);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,
Expand[b[f, t]*b[n-1-f, t]*x^t + b[f, t+1]*b[n-1 - f, t+1]]][
Min[g-1, n-g/2]]][2^(Length@IntegerDigits[n, 2]-1)]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 09 2024, after Alois P. Heinz *)
A372628
Number of defective (binary) heaps on n elements from the set {0,1} with exactly one defect.
Original entry on oeis.org
0, 0, 1, 2, 6, 11, 20, 32, 60, 100, 162, 255, 427, 692, 1093, 1738, 2800, 4507, 6951, 11032, 17224, 27553, 42276, 67639, 103989, 165856, 251312, 401236, 608112, 968380, 1465934, 2354752, 3525880, 5585826, 8370796, 13394396, 19937564, 31632664, 47478092
Offset: 0
a(2) = 1: 01.
a(3) = 2: 001, 010.
a(4) = 6: 0001, 0010, 0100, 0101, 1001, 1011.
a(5) = 11: 00001, 00010, 00100, 01000, 01001, 01010, 01011, 10001, 10010, 10101, 10110.
(The examples use max-heaps.)
-
b:= proc(n, t) option remember; convert(series(`if`(n=0, 1, (g->
(f-> expand(b(f, 1)*b(n-1-f, 1)*t+b(f, x)*b(n-1-f, x)))(
min(g-1, n-g/2)))(2^ilog2(n))), x, 2), polynom)
end:
a:= n-> coeff(b(n, 1), x, 1):
seq(a(n), n=0..38);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function[f,
Expand[b[f, 1]*b[n - 1 - f, 1]*t + b[f, x]*b[n - 1 - f, x]]][
Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[n, 2]] - 1)]];
a[n_] := Coefficient[b[n, 1], x, 1];
Table[a[n], {n, 0, 38}] (* Jean-François Alcover, May 11 2024, after Alois P. Heinz *)
A372489
Number of defective (binary) heaps on 2n elements from the set {0,1} with exactly n defects.
Original entry on oeis.org
1, 1, 3, 4, 8, 18, 41, 104, 253, 579, 1370, 3184, 7331, 16720, 38720, 91720, 218038, 518268, 1259464, 3141644, 7687556, 18460394, 45409204, 115174672, 283748621, 680088840, 1665189408, 4207220068, 10403856572, 25304979704, 62881939100, 161253396400, 396959041273
Offset: 0
a(0) = 1: the empty heap.
a(1) = 1: 01.
a(2) = 3: 0011, 0110, 0111.
a(3) = 4: 000111, 001110, 001111, 100111.
a(4) = 8: 00001111, 00011110, 00011111, 01000111, 01001111, 10001111, 10011110, 10011111.
a(5) = 18: 0000011111, 0000111110, 0000111111, 0100001111, 0100010111, 0100011011, 0100011101, 0100011110, 0100111110, 0100111111, 0110000111, 0110001111, 0110010111, 0110011111, 1000011111, 1000111110, 1000111111, 1100011111.
(The examples use max-heaps.)
-
b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->
expand(b(f, 1)*b(n-1-f, 1)*t+b(f, x)*b(n-1-f, x)))(
min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> coeff(b(2*n, 1), x, n):
seq(a(n), n=0..32);
Showing 1-4 of 4 results.
Comments