A306393
Number T(n,k) of defective (binary) heaps on n elements where k ancestor-successor pairs do not have the correct order; triangle T(n,k), n >= 0, 0 <= k <= A061168(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 2, 3, 6, 6, 6, 3, 8, 16, 24, 24, 24, 16, 8, 20, 60, 100, 120, 120, 120, 100, 60, 20, 80, 240, 480, 640, 720, 720, 720, 640, 480, 240, 80, 210, 840, 1890, 3150, 4200, 4830, 5040, 5040, 4830, 4200, 3150, 1890, 840, 210
Offset: 0
T(4,0) = 3: 4231, 4312, 4321.
T(4,1) = 6: 3241, 3412, 3421, 4123, 4132, 4213.
T(4,2) = 6: 2341, 2413, 2431, 3124, 3142, 3214.
T(4,3) = 6: 1342, 1423, 1432, 2134, 2143, 2314.
T(4,4) = 3: 1234, 1243, 1324.
T(5,1) = 16: 43512, 43521, 45123, 45132, 45213, 45231, 45312, 45321, 52314, 52341, 52413, 52431, 53124, 53142, 53214, 53241.
(The examples use max-heaps.)
Triangle T(n,k) begins:
1;
1;
1, 1;
2, 2, 2;
3, 6, 6, 6, 3;
8, 16, 24, 24, 24, 16, 8;
20, 60, 100, 120, 120, 120, 100, 60, 20;
80, 240, 480, 640, 720, 720, 720, 640, 480, 240, 80;
...
Columns k=0-10 give:
A056971,
A324062,
A324063,
A324064,
A324065,
A324066,
A324067,
A324068,
A324069,
A324070,
A324071.
Central terms (also maxima) of rows give
A324075.
Average number of inversions of a full binary heap on 2^n-1 elements is
A000337.
-
b:= proc(u, o) option remember; local n, g, l; n:= u+o;
if n=0 then 1
else g:= 2^ilog2(n); l:= min(g-1, n-g/2); expand(
add(x^(n-j)*add(binomial(j-1, i)*binomial(n-j, l-i)*
b(i, l-i)*b(j-1-i, n-l-j+i), i=0..min(j-1, l)), j=1..u)+
add(x^(j-1)*add(binomial(j-1, i)*binomial(n-j, l-i)*
b(l-i, i)*b(n-l-j+i, j-1-i), i=0..min(j-1, l)), j=1..o))
fi
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
-
b[u_, o_] := b[u, o] = Module[{n, g, l}, n = u + o;
If[n == 0, 1, g = 2^Floor@Log[2, n]; l = Min[g - 1, n - g/2]; Expand[
Sum[x^(n-j)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
b[i, l-i]*b[j-1-i, n-l-j+i], {i, 0, Min[j - 1, l]}], {j, 1, u}] +
Sum[x^(j-1)*Sum[Binomial[j - 1, i]*Binomial[n - j, l - i]*
b[l-i, i]*b[n-l-j+i, j-1-i], {i, 0, Min[j-1, l]}], {j, 1, o}]]]];
T[n_] := CoefficientList[b[n, 0], x];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 15 2021, after Alois P. Heinz *)
A091980
Recursive sequence; one more than maximum of products of pairs of previous terms with indices summing to current index.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 16, 26, 36, 56, 81, 131, 183, 287, 417, 677, 937, 1457, 2107, 3407, 4759, 7463, 10843, 17603, 24373, 37913, 54838, 88688, 123892, 194300, 282310, 458330, 634350, 986390, 1426440, 2306540, 3221844, 5052452, 7340712, 11917232, 16500522
Offset: 1
- A. de Mier and M. Noy, On the maximum number of cycles in outerplanar and series-parallel graphs, Graphs Combin., 28 (2012), 265-275.
-
b:= proc(n) option remember; `if`(n=0, 1, (g-> (f->
1+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> b(n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2019
-
a[n_] := a[n] = 1 + Max[Table[a[i] a[n-i], {i, n-1}]]; a[1] = 1;
Array[a, 50] (* Jean-François Alcover, Apr 30 2020 *)
A370484
Number T(n,k) of defective (binary) heaps on n elements from the set {0,1} with k defects; triangle T(n,k), n>=0, read by rows.
Original entry on oeis.org
1, 2, 3, 1, 5, 2, 1, 7, 6, 3, 11, 11, 9, 1, 16, 20, 24, 4, 26, 32, 52, 16, 2, 36, 60, 100, 52, 8, 56, 100, 192, 120, 40, 4, 81, 162, 351, 300, 111, 18, 1, 131, 255, 631, 627, 313, 77, 13, 1, 183, 427, 1067, 1311, 821, 241, 41, 5, 287, 692, 1856, 2484, 1894, 764, 184, 28, 3
Offset: 0
T(4,0) = 7: 0000, 1000, 1010, 1100, 1101, 1110, 1111.
T(4,1) = 6: 0001, 0010, 0100, 0101, 1001, 1011.
T(4,2) = 3: 0011, 0110, 0111.
(The examples use max-heaps.)
Triangle T(n,k) begins:
1;
2;
3, 1;
5, 2, 1;
7, 6, 3;
11, 11, 9, 1;
16, 20, 24, 4;
26, 32, 52, 16, 2;
36, 60, 100, 52, 8;
56, 100, 192, 120, 40, 4;
81, 162, 351, 300, 111, 18, 1;
131, 255, 631, 627, 313, 77, 13, 1;
183, 427, 1067, 1311, 821, 241, 41, 5;
...
-
b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->
expand(b(f, 1)*b(n-1-f, 1)*t+b(f, x)*b(n-1-f, x)))(
min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..15);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,
Expand[b[f, 1]*b[n - 1 - f, 1]*t + b[f, x]*b[n - 1 - f, x]]][
Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[n, 2]] - 1)]];
T[n_] := CoefficientList[b[n, 1], x];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 09 2024, after Alois P. Heinz *)
A372643
Number of defective (binary) heaps on n elements from the set {0,1} where exactly one ancestor-successor pair does not have the correct order.
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 13, 22, 36, 54, 99, 164, 260, 400, 692, 1146, 1730, 2638, 4358, 7148, 10788, 16716, 27168, 44692, 65630, 100736, 159851, 261156, 385740, 599704, 946368, 1551686, 2245014, 3455650, 5364990, 8743620, 12757292, 19869332, 30818816, 50429524
Offset: 0
a(2) = 1: 01.
a(3) = 2: 001, 010.
a(4) = 4: 0010, 0100, 1001, 1011.
a(5) = 6: 00100, 01000, 10001, 10010, 10101, 10110.
a(6) = 13: 001000, 010000, 100001, 100010, 100100, 101010, 101011, 101100, 101101, 110001, 110011, 110101, 110111.
(The examples use max-heaps.)
-
b:= proc(n, t) option remember; convert(series(`if`(n=0, 1, (g->
(f-> expand(b(f, t)*b(n-1-f, t)*x^t+b(f, t+1)*b(n-1-f, t+1)
))(min(g-1, n-g/2)))(2^ilog2(n))),x,2), polynom)
end:
a:= n-> coeff(b(n, 0),x,1):
seq(a(n), n=0..39);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,
Expand[b[f, t]*b[n - 1 - f, t]*x^t + b[f, t + 1]*b[n - 1 - f, t + 1]]][
Min[g - 1, n - g/2]]][2^(Length@IntegerDigits[n, 2] - 1)]];
a[n_] := Coefficient[b[n, 0], x, 1];
Table[a[n], {n, 0, 39}] (* Jean-François Alcover, May 09 2024, after Alois P. Heinz *)
A372641
Number of defective (binary) heaps on n elements from the set {0,1} where exactly n ancestor-successor pairs do not have the correct order.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 2, 2, 9, 11, 36, 71, 151, 306, 591, 1228, 2469, 4966, 10025, 19591, 38946, 75977, 148585, 291027, 579981, 1152385, 2280696, 4470814, 8817933, 17244969, 33819425, 65976444, 129933731, 254791662, 499516984, 977417823, 1914394157, 3745482924
Offset: 0
a(5) = 1: 00111.
a(6) = 2: 000111, 001111.
a(7) = 2: 0011111, 0101111.
a(8) = 9: 00010111, 00011011, 00011101, 00011110, 00101111, 00111011, 00111101, 01001111, 01011111.
a(9) = 11: 000011101, 000011110, 001001111, 001010011, 001101111, 001110011, 001111101, 001111110, 010001111, 010111111, 011011111.
(The examples use max-heaps.)
-
b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->
expand(b(f, t)*b(n-1-f, t)*x^t+b(f, t+1)*b(n-1-f, t+1)
))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> coeff(b(n, 0),x,n):
seq(a(n), n=0..37);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,
Expand[b[f, t]*b[n-1-f, t]*x^t + b[f, t+1]*b[n-1-f, t+1]]][
Min[g-1, n-g/2]]][2^(Length@IntegerDigits[n, 2]-1)]];
a[n_] := Coefficient[b[n, 0], x, n];
Table[a[n], {n, 0, 37}] (* Jean-François Alcover, May 09 2024, after Alois P. Heinz *)
A372642
Number of defective (binary) heaps on 2n elements from the set {0,1} where exactly n ancestor-successor pairs do not have the correct order.
Original entry on oeis.org
1, 1, 3, 8, 33, 112, 370, 1186, 4338, 14999, 52175, 179159, 649132, 2415766, 8994203, 33305573, 120968991, 431067336, 1538631892, 5509192918, 19859364136, 72330631743, 265219210010, 977508697125, 3619996788047, 13376125657317, 49294003078858, 181671504803323
Offset: 0
a(0) = 1: the empty heap.
a(1) = 1: 01.
a(2) = 3: 0001, 0101, 0110.
a(3) = 8: 001010, 001100, 010001, 010110, 011001, 011010, 011100, 100111.
(The examples use max-heaps.)
-
b:= proc(n, t) option remember; `if`(n=0, 1, (g-> (f->
expand(b(f, t)*b(n-1-f, t)*x^t+b(f, t+1)*b(n-1-f, t+1)
))(min(g-1, n-g/2)))(2^ilog2(n)))
end:
a:= n-> coeff(b(2*n, 0), x, n):
seq(a(n), n=0..27);
-
b[n_, t_] := b[n, t] = If[n == 0, 1, Function[g, Function [f,
Expand[b[f, t]*b[n - 1 - f, t]*x^t + b[f, t + 1]*b[n - 1 - f, t + 1]]][
Min[g - 1, n - g/2]]][2^(Length@IntegerDigits[n, 2] - 1)]];
a[n_] := Coefficient[b[2 n, 0], x, n];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, May 09 2024, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments