cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370624 Coefficient of x^n in the expansion of 1 / (1-x-x^3)^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 987, 4278, 18711, 82390, 364793, 1622556, 7244419, 32449158, 145747290, 656199048, 2960596359, 13382107227, 60587421882, 274712295550, 1247233045905, 5669390005950, 25798654040580, 117513750346200, 535766200488675, 2444698473079356
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Cf. A049140.

Programs

  • PARI
    a(n, s=3, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^3) ).