cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378464 a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 13, 63, 306, 1473, 7085, 34239, 166459, 813618, 3994200, 19678233, 97239130, 481740885, 2392004853, 11900655999, 59312062026, 296071376307, 1479998924447, 7407613846698, 37118966710076, 186195636158436, 934889598483048, 4698229684691913, 23629859054461331
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k-1, k)*binomial(2*n-1, n-3*k));

Formula

a(n) = [x^n] 1/(1 - x - x^3/(1 - x)^2)^n.

A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1).

Original entry on oeis.org

1, 2, 6, 24, 100, 420, 1792, 7752, 33858, 148940, 658944, 2929056, 13070876, 58521344, 262754040, 1182619280, 5334172518, 24104916504, 109111142376, 494630028200, 2245300152480, 10204575481320, 46429481139000, 211460450151600, 963971663881200, 4398118872144192
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 3 then t:= t + procname(x-3,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..25); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/(1 - x - x^3)^(n+1).
a(n) = (n+1) * A049140(n+1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-2*k,n-3*k).

A383481 Coefficient of x^n in the expansion of 1 / (1-x-x^4)^n.

Original entry on oeis.org

1, 1, 3, 10, 39, 156, 630, 2556, 10431, 42823, 176748, 732810, 3049722, 12732188, 53299284, 223645200, 940355391, 3961092906, 16712516565, 70615352330, 298761296064, 1265504676810, 5366250376710, 22777466596560, 96768003904650, 411451657313931, 1750809473690436, 7455339422353396
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(binomial(n+k-1,k)*binomial(2*n-3*k-1,n-4*k),k=0..n/4) end proc:
    map(f, [$0..40]);  # Robert Israel, May 28 2025
  • PARI
    a(n, s=4, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n+k-1,k) * binomial(2*n-3*k-1,n-4*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^4) ).

A378463 a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-k-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 13, 59, 266, 1203, 5489, 25259, 117022, 545038, 2549592, 11970035, 56372460, 266194295, 1259910113, 5975382699, 28390616727, 135108035502, 643891031826, 3072604703774, 14679493913048, 70206875750168, 336103001918788, 1610476039036259, 7723148579525441
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k-1, k)*binomial(2*n-k-1, n-3*k));

Formula

a(n) = [x^n] 1/(1 - x - x^3/(1 - x))^n.
Showing 1-4 of 4 results.