cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A370584 Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 18, 36, 48, 68, 104, 208, 284, 568, 888, 1296, 1548, 3096, 3968, 7936, 10736, 15440, 24008, 48016, 58848, 73680, 114368, 132608, 176240, 352480, 449824, 899648, 994976, 1399968, 2160720, 2859584, 3296048, 6592096, 10156672, 14214576, 16892352
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3).

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {2,3}
                             {2,5}    {2,5}
                             {3,4}    {2,6}
                             {3,5}    {3,4}
                             {4,5}    {3,5}
                             {2,3,5}  {3,6}
                             {3,4,5}  {4,5}
                                      {4,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

For divisors instead of factors we have A051026, cf. A368110, A355740.
The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
For existence we have A370582, differences A370586.
For nonexistence we have A370583, differences A370587.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, cf. A370592, A370593.
For binary indices instead of factors we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
For unlabeled multiset partitions we have A370646, cf. A368098, A368097.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370645 Number of integer factorizations of n into unordered factors > 1 such that only one set can be obtained by choosing a different prime factor of each factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2024

Keywords

Comments

All of these factorizations are co-balanced (A340596).

Examples

			The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180).
The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288:
  (2)  (2*6)  (3*8)   (4*9)   (8*9)   (3*5*8)   (2*72)   (4*5*9)   (3*96)
       (3*4)  (4*6)   (6*6)   (2*36)  (4*5*6)   (3*48)   (5*6*6)   (4*72)
              (2*12)  (2*18)  (3*24)  (2*3*20)  (4*36)   (2*3*30)  (6*48)
                      (3*12)  (4*18)  (2*5*12)  (6*24)   (2*5*18)  (8*36)
                              (6*12)  (2*6*10)  (8*18)   (2*6*15)  (9*32)
                                      (3*4*10)  (9*16)   (2*9*10)  (12*24)
                                                (12*12)  (3*4*15)  (16*18)
                                                         (3*5*12)  (2*144)
                                                         (3*6*10)
		

Crossrefs

Multisets of this type are ranked by A368101, see also A368100, A355529.
For nonexistence we have A368413, complement A368414.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, see also A370592, A370593.
Subsets of this type are counted by A370638, see also A370636, A370637.
For unlabeled multiset partitions we have A370646, also A368098, A368097.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A027746 lists prime factors, A112798 indices, length A001222.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
A355741 counts ways to choose a prime factor of each prime index.
For set-systems see A367902-A367908.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]],{n,100}]
Showing 1-2 of 2 results.