A239312
Number of condensed integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
Offset: 0
a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From _Gus Wiseman_, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,2,2) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,2,2) (4,4,1)
(4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,2,1)
(End)
The complement is counted by
A370320.
The version for prime factors (not all divisors) is
A370592, ranks
A368100.
A237685 counts partitions of depth 1, or
A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
Cf.
A355535,
A355733,
A355739,
A367867,
A368097,
A368414,
A370583,
A370584,
A370594,
A370806,
A370808.
-
b:= proc(n,i) option remember; `if`(n=0, {[]},
`if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> nops(b(n$2)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 01 2019
-
u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0, 30}]
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]>0&]], {n,0,30}] (* Gus Wiseman, Mar 12 2024 *)
A370320
Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
Offset: 0
The a(0) = 0 through a(8) = 13 partitions:
. . (11) (111) (211) (221) (222) (331) (611)
(1111) (311) (411) (511) (2222)
(2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (5111)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
The complement is counted by
A239312 (condensed partitions).
These partitions have ranks
A355740.
Factorizations in the case of prime factors are
A368413, complement
A368414.
The version for prime factors (not all divisors) is
A370593, ranks
A355529.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
Cf.
A355535,
A355739,
A367867,
A368097,
A368110,
A370583,
A370584,
A370594,
A370806,
A370807,
A370808.
-
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]],{n,0,30}]
A370583
Number of subsets of {1..n} such that it is not possible to choose a different prime factor of each element.
Original entry on oeis.org
0, 1, 2, 4, 10, 20, 44, 88, 204, 440, 908, 1816, 3776, 7552, 15364, 31240, 63744, 127488, 257592, 515184, 1036336, 2079312, 4166408, 8332816, 16709632, 33470464, 66978208, 134067488, 268236928, 536473856, 1073233840, 2146467680, 4293851680, 8588355424, 17177430640
Offset: 0
The a(0) = 0 through a(5) = 20 subsets:
. {1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,4} {1,4}
{2,4} {1,5}
{1,2,3} {2,4}
{1,2,4} {1,2,3}
{1,3,4} {1,2,4}
{2,3,4} {1,2,5}
{1,2,3,4} {1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
For non-isomorphic multiset partitions we have
A368097, complement
A368098.
The complement is counted by
A370582.
For a unique choice we have
A370584.
For binary indices instead of factors we have
A370637, complement
A370636.
A355741 counts choices of a prime factor of each prime index.
Cf.
A000040,
A000720,
A001055,
A001414,
A003963,
A005117,
A045778,
A355739,
A355745,
A367867,
A367905,
A368187.
-
Table[Length[Select[Subsets[Range[n]], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
A370585
Number of maximal subsets of {1..n} such that it is possible to choose a different prime factor of each element.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 579, 1235, 1235, 1523, 1968, 4160, 4824, 6840, 6840, 9140, 9140, 10028, 16264, 33956, 48680, 56000, 56000, 116472, 186724, 223884, 223884, 290312, 290312, 403484, 484028, 1001420
Offset: 0
The a(0) = 1 through a(8) = 7 subsets:
{} {} {2} {2,3} {2,3} {2,3,5} {2,3,5} {2,3,5,7} {2,3,5,7}
{3,4} {3,4,5} {2,5,6} {2,5,6,7} {2,5,6,7}
{3,4,5} {3,4,5,7} {3,4,5,7}
{3,5,6} {3,5,6,7} {3,5,6,7}
{4,5,6} {4,5,6,7} {3,5,7,8}
{4,5,6,7}
{5,6,7,8}
Factorizations of this type are counted by
A368414, complement
A368413.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Cf.
A000040,
A000720,
A005117,
A045778,
A133686,
A333331,
A355739,
A355740,
A355744,
A355745,
A367905,
A368110.
-
Table[Length[Select[Subsets[Range[n], {PrimePi[n]}],Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]
A370582
Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.
Original entry on oeis.org
1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0
The a(0) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {2,6}
{4,5} {3,4}
{2,3,5} {3,5}
{3,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,3,5}
{2,5,6}
{3,4,5}
{3,5,6}
{4,5,6}
For unlabeled multiset partitions we have
A368098, complement
A368097.
The complement is counted by
A370583.
For a unique choice we have
A370584.
For binary indices instead of factors we have
A370636, complement
A370637.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
Cf.
A000040,
A000720,
A001055,
A001414,
A003963,
A005117,
A045778,
A133686,
A355739,
A355744,
A355745,
A367905.
-
Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]
A370586
Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).
Original entry on oeis.org
0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
Offset: 0
The a(0) = 0 through a(7) = 20 subsets:
. . {2} {3} {4} {5} {6} {7}
{2,3} {3,4} {2,5} {2,6} {2,7}
{3,5} {3,6} {3,7}
{4,5} {4,6} {4,7}
{2,3,5} {5,6} {5,7}
{3,4,5} {2,5,6} {6,7}
{3,5,6} {2,3,7}
{4,5,6} {2,5,7}
{2,6,7}
{3,4,7}
{3,5,7}
{3,6,7}
{4,5,7}
{4,6,7}
{5,6,7}
{2,3,5,7}
{2,5,6,7}
{3,4,5,7}
{3,5,6,7}
{4,5,6,7}
Maximal choosable sets are counted by
A370585.
The complement is counted by
A370587.
For a unique choice we have
A370588.
For binary indices instead of prime factors we have
A370639.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
Cf.
A000040,
A000720,
A005117,
A045778,
A133686,
A355739,
A355744,
A355745,
A367771,
A367905,
A370636.
-
Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]
A370594
Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
Offset: 0
The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(12) = 5 partitions:
() . (2) (3) (4) (5) . (7) (8) (9) (6,4) (11) (6,6)
(3,2) (4,3) (5,3) (5,4) (7,3) (7,4) (7,5)
(5,2) (6,2) (6,3) (5,3,2) (8,3) (10,2)
(7,2) (9,2) (5,4,3)
(7,3,2)
Maximal sets of this type are counted by
A370585.
For divisors instead of factors we have
A370595.
These partitions have ranks
A370647.
A355741 counts ways to choose a prime factor of each prime index.
-
Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,30}]
A370638
Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element.
Original entry on oeis.org
1, 2, 4, 6, 12, 19, 30, 45, 90, 147, 230, 343, 504, 716, 994, 1352, 2704, 4349, 6469, 9162, 12585, 16862, 22122, 28617, 36653, 46431, 58075, 72097, 88456, 107966, 130742, 157647, 315294, 494967, 704753, 950080, 1234301, 1565165, 1945681, 2387060, 2890368, 3470798
Offset: 0
The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4).
The a(0) = 1 through a(5) = 19 subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{1,2} {1,2} {4} {4}
{1,3} {1,2} {1,2}
{2,3} {1,3} {1,3}
{1,4} {1,4}
{2,3} {1,5}
{2,4} {2,3}
{1,2,4} {2,4}
{1,3,4} {4,5}
{2,3,4} {1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}
A version for MM-numbers of multisets is
A368101.
Factorizations of this type are counted by
A370645.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length[Select[Subsets[Range[n]],Length[Union[Sort /@ Select[Tuples[bpe/@#],UnsameQ@@#&]]]==1&]],{n,0,10}]
A370595
Number of integer partitions of n such that only one set can be obtained by choosing a different divisor of each part.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 3, 2, 4, 3, 4, 5, 8, 9, 8, 13, 12, 17, 16, 27, 28, 33, 36, 39, 50, 58, 65, 75, 93, 94, 112, 125, 148, 170, 190, 209, 250, 273, 305, 341, 403, 432, 484, 561, 623, 708, 765, 873, 977, 1109, 1178, 1367, 1493, 1669, 1824, 2054, 2265, 2521, 2770
Offset: 0
The a(1) = 1 through a(15) = 13 partitions (A = 10, B = 11, C = 12, D = 13):
1 . 21 22 . 33 322 71 441 55 533 B1 553 77 933
31 51 421 332 522 442 722 444 733 D1 B22
321 422 531 721 731 552 751 B21 B31
521 4321 4322 4332 931 4433 4443
5321 4431 4432 5441 5442
5322 5332 6332 5532
5421 5422 7322 6621
6321 6322 7421 7332
7321 7422
7521
8421
9321
54321
The version for prime factors (not all divisors) is
A370594, ranks
A370647.
These partitions have ranks
A370810.
A355731 counts choices of a divisor of each prime index, firsts
A355732.
A370592 counts partitions with choosable prime factors, ranks
A368100.
A370593 counts partitions without choosable prime factors, ranks
A355529.
A370804 counts non-condensed partitions with no ones, complement
A370805.
A370814 counts factorizations with choosable divisors, complement
A370813.
-
Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]==1&]],{n,0,30}]
A370587
Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).
Original entry on oeis.org
0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0
The a(0) = 0 through a(5) = 10 subsets:
. {1} {1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,4} {1,2,5}
{1,2,4} {1,3,5}
{1,3,4} {1,4,5}
{2,3,4} {2,4,5}
{1,2,3,4} {1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by
A370586.
For a unique choice we have
A370588.
For binary indices instead of factors we have
A370639, complement
A370589.
A355741 counts choices of a prime factor of each prime index.
A368098 counts choosable unlabeled multiset partitions, complement
A368097.
A370585 counts maximal choosable sets.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]
Showing 1-10 of 21 results.
Comments