cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A051026 Number of primitive subsequences of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 5, 7, 13, 17, 33, 45, 73, 103, 205, 253, 505, 733, 1133, 1529, 3057, 3897, 7793, 10241, 16513, 24593, 49185, 59265, 109297, 163369, 262489, 355729, 711457, 879937, 1759873, 2360641, 3908545, 5858113, 10534337, 12701537, 25403073, 38090337, 63299265, 81044097, 162088193, 205482593, 410965185, 570487233, 855676353
Offset: 0

Views

Author

Keywords

Comments

a(n) counts all subsequences of {1, ..., n} in which no term divides any other. If n is a prime a(n) = 2*a(n-1)-1 because for each subsequence s counted by a(n-1) two different subsequences are counted by a(n): s and s,n. There is only one exception: 1,n is not a primitive subsequence because 1 divides n. For all n>1: a(n) < 2*a(n-1). - Alois P. Heinz, Mar 07 2011
Maximal primitive subsets are counted by A326077. - Gus Wiseman, Jun 07 2019

Examples

			a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4).
a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5).
From _Gus Wiseman_, Jun 07 2019: (Start)
The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {2,3}  {4}    {4}
                       {2,3}  {5}
                       {3,4}  {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {2,3,5}
                              {3,4,5}
a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {1,2}  {1,2}    {1,3}      {1,3}
                  {1,3}    {1,4}      {1,4}
                  {1,2,3}  {1,2,4}    {1,5}
                           {1,3,4}    {1,2,4}
                           {1,2,3,4}  {1,3,4}
                                      {1,3,5}
                                      {1,4,5}
                                      {1,2,3,4}
                                      {1,2,4,5}
                                      {1,3,4,5}
                                      {1,2,3,4,5}
Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {2}    {2}      {3}        {3}
           {1,2}  {3}      {4}        {4}
                  {2,3}    {2,4}      {5}
                  {1,2,3}  {3,4}      {2,4}
                           {2,3,4}    {3,4}
                           {1,2,3,4}  {3,5}
                                      {4,5}
                                      {2,3,4}
                                      {2,4,5}
                                      {3,4,5}
                                      {2,3,4,5}
                                      {1,2,3,4,5}
(End)
From _Gus Wiseman_, Mar 12 2024: (Start)
Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {1,2}  {1,2}    {1,2}      {1,2}
                  {1,3}    {1,3}      {1,3}
                  {1,2,3}  {1,2,3}    {1,5}
                           {1,2,4}    {1,2,3}
                           {1,2,3,4}  {1,2,4}
                                      {1,2,5}
                                      {1,3,5}
                                      {1,2,3,4}
                                      {1,2,3,5}
                                      {1,2,4,5}
                                      {1,2,3,4,5}
(End)
		

References

  • Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 320. - N. J. A. Sloane, Apr 06 2012

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(s) option remember; local n;
          n:= max(s[]);
          `if`(n<0, 1, b(s minus {n}) + b(s minus divisors(n)))
        end:
    bb:= n-> b({$2..n} minus divisors(n)):
    sb:= proc(n) option remember; `if`(n<2, 0, bb(n) + sb(n-1)) end:
    a:= n-> `if`(n=0, 1, `if`(isprime(n), 2*a(n-1)-1, 2+sb(n))):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 07 2011
  • Mathematica
    b[s_] := b[s] = With[{n=Max[s]}, If[n < 0, 1, b[Complement[s, {n}]] + b[Complement[s, Divisors[n]]]]];
    bb[n_] := b[Complement[Range[2, n], Divisors[n]]];
    sb[n_] := sb[n] = If[n < 2, 0, bb[n] + sb[n-1]];
    a[n_] := If[n == 0, 1, If[PrimeQ[n], 2a[n-1] - 1, 2 + sb[n]]]; Table[a[n], {n, 0, 37}]
    (* Jean-François Alcover, Jul 27 2011, converted from Maple *)
    Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Select[Union@@Table[#*i,{i,n}],#<=n&]]&]],{n,10}] (* Gus Wiseman, Jun 07 2019 *)
    Table[Length[Select[Subsets[Range[n]], #==Union@@Divisors/@#&]],{n,0,10}] (* Gus Wiseman, Mar 12 2024 *)

Extensions

More terms from David Wasserman, May 02 2002
a(32)-a(37) from Donovan Johnson, Aug 11 2010

A370592 Number of integer partitions of n such that it is possible to choose a different prime factor of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 3, 3, 4, 4, 5, 6, 7, 9, 11, 12, 12, 16, 18, 22, 26, 29, 29, 37, 41, 49, 55, 61, 68, 72, 88, 98, 110, 120, 135, 146, 166, 190, 209, 227, 252, 277, 309, 346, 379, 413, 447, 500, 548, 606, 665, 727, 785, 857, 949, 1033, 1132, 1228, 1328, 1440
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The partition (10,6,4) has choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(10) = 4 partitions:
  ()  .  (2)  (3)  (4)  (5)    (6)  (7)    (8)    (9)    (10)
                        (3,2)       (4,3)  (5,3)  (5,4)  (6,4)
                                    (5,2)  (6,2)  (6,3)  (7,3)
                                                  (7,2)  (5,3,2)
The a(0) = 1 through a(17) = 12 partitions (0 = {}, A..H = 10..17):
  0  .  2  3  4  5   6  7   8   9   A    B   C    D    E    F    G    H
                 32     43  53  54  64   65  66   76   86   87   97   98
                        52  62  63  73   74  75   85   95   96   A6   A7
                                72  532  83  A2   94   A4   A5   B5   B6
                                         92  543  A3   B3   B4   C4   C5
                                             732  B2   C2   C3   D3   D4
                                                  652  653  D2   E2   E3
                                                       743  654  754  F2
                                                       752  753  763  665
                                                            762  853  764
                                                            A32  952  A43
                                                                 B32  7532
		

Crossrefs

The version for divisors instead of factors is A239312, ranks A368110.
The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
These partitions have ranks A368100.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370593, ranks A355529.
For a unique choice we have A370594, ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,30}]

Formula

a(n) = A000041(n) - A370593(n).

A370593 Number of integer partitions of n such that it is not possible to choose a different prime factor of each part.

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 10, 12, 19, 26, 38, 51, 71, 94, 126, 165, 219, 285, 369, 472, 605, 766, 973, 1226, 1538, 1917, 2387, 2955, 3657, 4497, 5532, 6754, 8251, 10033, 12190, 14748, 17831, 21471, 25825, 30976, 37111, 44331, 52897, 62952, 74829, 88755, 105145, 124307
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The a(0) = 0 through a(7) = 12 partitions:
  .  (1)  (11)  (21)   (22)    (41)     (33)      (61)
                (111)  (31)    (221)    (42)      (322)
                       (211)   (311)    (51)      (331)
                       (1111)  (2111)   (222)     (421)
                               (11111)  (321)     (511)
                                        (411)     (2221)
                                        (2211)    (3211)
                                        (3111)    (4111)
                                        (21111)   (22111)
                                        (111111)  (31111)
                                                  (211111)
                                                  (1111111)
		

Crossrefs

The complement for divisors instead of factors is A239312, ranks A368110.
These partitions have ranks A355529, complement A368100.
The complement for set-systems is A367902, ranks A367906, unlabeled A368095.
The version for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368097, complement A368098.
The version for factorizations is A368413, complement A368414.
The complement is counted by A370592.
For a unique choice we have A370594, ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,30}]

Formula

a(n) = A000041(n) - A370592(n).

A370582 Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2024

Keywords

Examples

			The a(0) = 1 through a(6) = 20 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
Multisets of this type are ranked by A368100, complement A355529.
For divisors instead of factors we have A368110, complement A355740.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370583.
For a unique choice we have A370584.
The maximal case is A370585.
Partial sums of A370586, complement A370587.
The version for partitions is A370592, complement A370593.
For binary indices instead of factors we have A370636, complement A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Formula

a(p) = 2 * a(p-1) for prime p. - David A. Corneth, Feb 25 2024
a(n) = 2^n - A370583(n).

Extensions

a(19) from David A. Corneth, Feb 25 2024
a(20)-a(41) from Alois P. Heinz, Feb 25 2024

A370584 Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 18, 36, 48, 68, 104, 208, 284, 568, 888, 1296, 1548, 3096, 3968, 7936, 10736, 15440, 24008, 48016, 58848, 73680, 114368, 132608, 176240, 352480, 449824, 899648, 994976, 1399968, 2160720, 2859584, 3296048, 6592096, 10156672, 14214576, 16892352
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3).

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {2,3}
                             {2,5}    {2,5}
                             {3,4}    {2,6}
                             {3,5}    {3,4}
                             {4,5}    {3,5}
                             {2,3,5}  {3,6}
                             {3,4,5}  {4,5}
                                      {4,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

For divisors instead of factors we have A051026, cf. A368110, A355740.
The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
For existence we have A370582, differences A370586.
For nonexistence we have A370583, differences A370587.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, cf. A370592, A370593.
For binary indices instead of factors we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
For unlabeled multiset partitions we have A370646, cf. A368098, A368097.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370586 Number of subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 8, 20, 12, 20, 44, 116, 88, 320, 380, 508, 264, 1792, 968, 4552, 3136, 5600, 10056, 27896, 11792, 16384, 46688, 19584, 48288, 198528, 110928, 507984, 99648, 463552, 859376, 821136, 470688, 3730368, 4033920, 4651296, 2932512, 19078464
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Examples

			The a(0) = 0 through a(7) = 20 subsets:
  .  .  {2}  {3}    {4}    {5}      {6}      {7}
             {2,3}  {3,4}  {2,5}    {2,6}    {2,7}
                           {3,5}    {3,6}    {3,7}
                           {4,5}    {4,6}    {4,7}
                           {2,3,5}  {5,6}    {5,7}
                           {3,4,5}  {2,5,6}  {6,7}
                                    {3,5,6}  {2,3,7}
                                    {4,5,6}  {2,5,7}
                                             {2,6,7}
                                             {3,4,7}
                                             {3,5,7}
                                             {3,6,7}
                                             {4,5,7}
                                             {4,6,7}
                                             {5,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370582, complement A370583, cf. A370584.
Maximal choosable sets are counted by A370585.
The complement is counted by A370587.
For a unique choice we have A370588.
For binary indices instead of prime factors we have A370639.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

a(19)-a(41) from Alois P. Heinz, Feb 27 2024

A370594 Number of integer partitions of n such that only one set can be obtained by choosing a different prime factor of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 3, 3, 4, 3, 4, 5, 5, 8, 10, 11, 7, 14, 13, 19, 23, 24, 20, 30, 33, 40, 47, 49, 55, 53, 72, 80, 90, 92, 110, 110, 132, 154, 169, 180, 201, 218, 246, 281, 302, 323, 348, 396, 433, 482, 530, 584, 618, 670, 754, 823, 903, 980, 1047, 1137
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2024

Keywords

Examples

			The partition (10,6,4) has unique choice (5,3,2) so is counted under a(20).
The a(0) = 1 through a(12) = 5 partitions:
()  .  (2)  (3)  (4)  (5)    .  (7)    (8)    (9)    (6,4)    (11)   (6,6)
                      (3,2)     (4,3)  (5,3)  (5,4)  (7,3)    (7,4)  (7,5)
                                (5,2)  (6,2)  (6,3)  (5,3,2)  (8,3)  (10,2)
                                              (7,2)           (9,2)  (5,4,3)
                                                                     (7,3,2)
		

Crossrefs

The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
The version for subsets is A370584, cf. A370582, A370583, A370586, A370587.
Maximal sets of this type are counted by A370585.
For existence we have A370592.
For nonexistence we have A370593.
For divisors instead of factors we have A370595.
For subsets and binary indices we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
These partitions have ranks A370647.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,30}]

A370587 Number of subsets of {1..n} containing n such that it is not possible to choose a different prime factor of each element (non-choosable).

Original entry on oeis.org

0, 1, 1, 2, 6, 10, 24, 44, 116, 236, 468, 908, 1960, 3776, 7812, 15876, 32504, 63744, 130104, 257592, 521152, 1042976, 2087096, 4166408, 8376816, 16760832, 33507744, 67089280, 134169440, 268236928, 536759984, 1073233840, 2147384000, 4294503744, 8589075216, 17179048048
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Examples

			The a(0) = 0 through a(5) = 10 subsets:
  .  {1}  {1,2}  {1,3}    {1,4}      {1,5}
                 {1,2,3}  {2,4}      {1,2,5}
                          {1,2,4}    {1,3,5}
                          {1,3,4}    {1,4,5}
                          {2,3,4}    {2,4,5}
                          {1,2,3,4}  {1,2,3,5}
                                     {1,2,4,5}
                                     {1,3,4,5}
                                     {2,3,4,5}
                                     {1,2,3,4,5}
		

Crossrefs

First differences of A370583, complement A370582, cf. A370584.
The complement is counted by A370586.
For a unique choice we have A370588.
For binary indices instead of factors we have A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370640 Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 1 through a(6) = 17 subsets:
  {}  {1}  {1,2}  {1,2}  {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,3,4}  {1,2,5}  {1,2,5}
                  {2,3}  {2,3,4}  {1,3,4}  {1,2,6}
                                  {1,3,5}  {1,3,4}
                                  {2,3,4}  {1,3,5}
                                  {2,3,5}  {1,3,6}
                                  {2,4,5}  {1,4,6}
                                  {3,4,5}  {1,5,6}
                                           {2,3,4}
                                           {2,3,5}
                                           {2,3,6}
                                           {2,4,5}
                                           {2,5,6}
                                           {3,4,5}
                                           {3,4,6}
                                           {3,5,6}
                                           {4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
    {1}  {1}{2}  {1}{2}   {1}{2}{3}   {1}{2}{3}    {1}{2}{3}
                 {1}{12}  {1}{12}{3}  {1}{12}{3}   {1}{12}{3}
                 {2}{12}  {2}{12}{3}  {1}{2}{13}   {1}{2}{13}
                                      {2}{12}{3}   {1}{2}{23}
                                      {2}{3}{13}   {1}{3}{23}
                                      {1}{12}{13}  {2}{12}{3}
                                      {12}{3}{13}  {2}{3}{13}
                                      {2}{12}{13}  {1}{12}{13}
                                                   {1}{12}{23}
                                                   {1}{13}{23}
                                                   {12}{3}{13}
                                                   {12}{3}{23}
                                                   {2}{12}{13}
                                                   {2}{12}{23}
                                                   {2}{13}{23}
                                                   {3}{13}{23}
                                                   {12}{13}{23}
		

Crossrefs

Dominated by A357812.
The version for set-systems is A368601, max of A367902 (complement A367903).
For prime indices we have A370585, with n A370590, see also A370591.
This is the maximal case of A370636 (complement A370637).
The case of a unique choice is A370638.
The case containing n is A370641, non-maximal A370639.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
  • PARI
    lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370642 Number of minimal subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 9, 26, 26, 40, 82, 175, 338, 636, 1114
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(6) = 9 subsets:
  .  .  .  {1,2,3}  {1,2,3}  {1,2,3}    {1,2,3}
                             {1,4,5}    {1,4,5}
                             {2,3,4,5}  {2,4,6}
                                        {1,2,5,6}
                                        {1,3,4,6}
                                        {1,3,5,6}
                                        {2,3,4,5}
                                        {2,3,5,6}
                                        {3,4,5,6}
		

Crossrefs

For prime indices we have A370591, minima of A370583, complement A370582.
This is the minimal case of A370637, complement A370636.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The case without ones is A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368100 ranks choosable multisets, complement A355529.
A370585 counts maximal choosable sets.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length[fasmin[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]]],{n,0,10}]
Showing 1-10 of 26 results. Next