cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A370649 Dimension of space of equivariant linear maps from R^{n^3} to R^{n^3} under diagonal action of {-1, 1}^n.

Original entry on oeis.org

0, 1, 32, 183, 544, 1205, 2256, 3787, 5888, 8649, 12160, 16511, 21792, 28093, 35504, 44115, 54016, 65297, 78048, 92359, 108320, 126021, 145552, 167003, 190464, 216025, 243776, 273807, 306208, 341069, 378480, 418531, 461312, 506913, 555424, 606935, 661536, 719317
Offset: 0

Views

Author

Derek Lim, Feb 25 2024

Keywords

Crossrefs

Cf. A000567.

Programs

  • Maple
    a:= n-> ((15*n-30)*n+16)*n:
    seq(a(n), n=0..37);  # Alois P. Heinz, Jul 14 2024
  • Python
    def A370649(n): return n*(15*(n-1)**2+1) # Chai Wah Wu, Jul 15 2024

Formula

a(n) = (1/2^n) * Sum_{s in {-1,1}^n} (s_1 + s_2 + ... + s_n)^6 [from Proposition 7 of Lim et al.]. - Sean A. Irvine, Jul 14 2024
From Alois P. Heinz, Jul 14 2024: (Start)
a(n) = 2^(-n) * Sum_{k=0..n} (2*k-n)^6 * binomial(n,k).
G.f.: x*(61*x^2+28*x+1)/(x-1)^4.
a(n) = 15*n^3 - 30*n^2 + 16*n. (End)
E.g.f.: exp(x)*x*(1 + 15*x + 15*x^2). - Stefano Spezia, Jul 15 2024

Extensions

a(21)-a(33) from Sean A. Irvine, Jul 14 2024
a(34)-a(37) from Alois P. Heinz, Jul 14 2024