A370656 Number of cross-equivalence classes of the symmetric group S_n, where two permutations are cross-equivalent if the multiset of forward distances for every element i in the permutation, for 1 <= i <= n-1, up to and including n, is the same.
1, 1, 1, 2, 5, 21, 108, 737, 5795, 53635, 549777, 6294420
Offset: 0
Examples
a(4)=5. The 1st equivalence class, consisting of multisets {{1}, {1,2}, {1,2,3}}, contains the following 8 permutations in S_4: (1) 1 2 3 4, (2) 1 2 4 3, (3) 1 4 3 2, (4) 3 4 2 1, (5) 2 4 3 1, (6) 1 3 4 2, (7) 4 3 2 1, (8) 2 3 4 1. The 2nd equivalence class, consisting of multisets {{1}, {2,3}, {1,1,2}}, contains the following 4 permutations in S_4: (1) 4 3 1 2, (2) 2 1 4 3, (3) 3 4 1 2, (4) 2 1 3 4. The 3rd equivalence class, consisting of multisets {{2}, {1,1}, {1,2,3}}, contains the following 4 permutations in S_4: (1) 4 2 3 1, (2) 1 4 2 3, (3) 1 3 2 4, (4) 3 2 4 1. The 4th equivalence class, consisting of multisets {{2}, {1,3}, {1,1,2}}, contains the following 4 permutations in S_4: (1) 3 1 4 2, (2) 4 1 3 2, (3) 2 3 1 4, (4) 2 4 1 3. The 5th equivalence class, consisting of multisets {{3}, {1,2}, {1,1,2}}, contains the following 4 permutations in S_4: (1) 3 2 1 4, (2) 4 2 1 3, (3) 4 1 2 3, (4) 3 1 2 4.
Links
- Constantinos Kourouzides, C++ program.
- Constantinos Kourouzides, Python program.
- Constantinos Kourouzides, GNU Octave program.
- Ioannis Michos, Christina Savvidou, and Demetris Hadjiloucas, On super-strong Wilf equivalence classes of permutations, The Electronic Journal of Combinatorics, 25(2) (2018), #P2.54.
Programs
-
Maple
f:= l-> (n-> {seq(sort([seq(abs(l[i]-l[j]), i=1..j-1)]), j=2..n)})(nops(l)): a:= n-> nops({map(f, combinat[permute](n))[]}): seq(a(n), n=0..9); # Alois P. Heinz, Mar 13 2024
-
PARI
C(p)={vector(#p, i, vecsort(vector(i-1, j, abs(p[i]-p[j]))))} a(n)={my(M=Map()); forperm(n, p, mapput(M,C(p),1)); #M} \\ Andrew Howroyd, Feb 24 2024
Extensions
a(11) from Andrew Howroyd, Feb 24 2024
Comments