A370759 Numbers expressible in the form k*m + 2*(k+m) - 1, for positive k and m.
4, 7, 10, 11, 13, 15, 16, 19, 20, 22, 23, 25, 27, 28, 30, 31, 34, 35, 37, 39, 40, 43, 44, 45, 46, 47, 49, 50, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 70, 71, 72, 73, 75, 76, 79, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 100, 103, 105, 106, 107, 109, 110, 111, 112
Offset: 1
Keywords
Examples
4 is a term: if each bundle consists of one straight line, the plane is divided into 4 regions. 7 is a term: if the first bundle consists of one line and the second consists of two lines, the plane is divided into 7 regions. These and other examples are illustrated in the linked figures.
Links
- Nicolay Avilov, Explanatory drawing.
- Nicolay Avilov, Illustration for terms a(1) - a(6).
Programs
-
PARI
print(Vec(setbinop((k,m)->k*m + 2*(k + m) - 1, [1..112]), 69)) \\ Michel Marcus, Mar 02 2024
-
Python
maxval = 112 av = [[k*m+2*k+2*m-1 for k in range(1,maxval)] for m in range(1,maxval)] flat = [n for row in av for n in row] uniq = list(set(flat)) a370759 = list(filter(lambda x: x<=maxval, uniq)) print(a370759) # Robert Munafo, Mar 25 2024
-
Python
from itertools import count, islice from sympy import isprime def A370759_gen(startvalue=4): # generator of terms >= startvalue return filter(lambda n:not (isprime(n+5) or (n&1 and isprime((n>>1)+3))),count(max(startvalue,4))) A370759_list = list(islice(A370759_gen(),20)) # Chai Wah Wu, Mar 26 2024
Formula
If there are k straight lines in the first bundle and m straight lines in the second bundle, then we get k*m + 2*(k + m) - 1 regions.
Comments