cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370800 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^3)) ).

Original entry on oeis.org

1, 2, 5, 14, 41, 120, 337, 855, 1671, 434, -20393, -158032, -885329, -4322580, -19407365, -81796098, -325964629, -1226861808, -4319079961, -13880383674, -38282558205, -72411121618, 65816173987, 1746824677851, 12859713835981, 73356840199948, 369390356474509
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^3)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^3) ).

A370801 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^4)) ).

Original entry on oeis.org

1, 2, 5, 15, 50, 176, 638, 2351, 8735, 32523, 120707, 444218, 1611211, 5714056, 19578953, 63495983, 186784641, 442718804, 396470087, -4588483661, -45923198497, -305945783479, -1761810468901, -9395726622973, -47743575327196, -234512941253088, -1122653095777562
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^4)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^4) ).

A370836 Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^2)) ).

Original entry on oeis.org

1, 1, 0, -2, -2, 6, 19, 1, -98, -170, 268, 1464, 967, -7253, -19035, 11497, 142894, 186814, -592148, -2327480, -371472, 14922592, 30367918, -44517534, -291059645, -242260229, 1550840094, 4611423196, -2050694753, -36095033685, -54276040088, 150373292998
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^2)))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n, 2*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k * binomial(n,2*k) * binomial(3*k,k)/(2*k+1).
Showing 1-3 of 3 results.