cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370799 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^2)) ).

Original entry on oeis.org

1, 2, 4, 7, 7, -18, -152, -648, -2076, -5006, -6442, 17866, 178102, 851516, 3004912, 7956103, 11925503, -24636636, -298702394, -1532903353, -5722053149, -16080843014, -27090920172, 37370086052, 584086176148, 3182365757908, 12407797520932, 36551266481968
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^2)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^2) ).

A370801 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^4)) ).

Original entry on oeis.org

1, 2, 5, 15, 50, 176, 638, 2351, 8735, 32523, 120707, 444218, 1611211, 5714056, 19578953, 63495983, 186784641, 442718804, 396470087, -4588483661, -45923198497, -305945783479, -1761810468901, -9395726622973, -47743575327196, -234512941253088, -1122653095777562
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^4)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^4) ).

A370837 Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^3)) ).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, -15, -6, 57, 231, 501, 474, -1223, -7331, -19655, -27813, 19089, 248541, 819141, 1508316, 417165, -8314449, -34737603, -78646452, -71651147, 251348311, 1461221581, 3984339966, 5586567405, -5424531663, -59608307151, -196443394947
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^3)))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(n, 3*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(n,3*k) * binomial(4*k,k)/(3*k+1).
Showing 1-3 of 3 results.