cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370799 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^2)) ).

Original entry on oeis.org

1, 2, 4, 7, 7, -18, -152, -648, -2076, -5006, -6442, 17866, 178102, 851516, 3004912, 7956103, 11925503, -24636636, -298702394, -1532903353, -5722053149, -16080843014, -27090920172, 37370086052, 584086176148, 3182365757908, 12407797520932, 36551266481968
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^2)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^2) ).

A370800 Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x+x^3)) ).

Original entry on oeis.org

1, 2, 5, 14, 41, 120, 337, 855, 1671, 434, -20393, -158032, -885329, -4322580, -19407365, -81796098, -325964629, -1226861808, -4319079961, -13880383674, -38282558205, -72411121618, 65816173987, 1746824677851, 12859713835981, 73356840199948, 369390356474509
Offset: 0

Views

Author

Seiichi Manyama, Mar 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1-x+x^3)))/x)

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * b(k), where g.f. B(x) = Sum_{k>=0} b(k)*x^k satisfies B(x) = (1/x) * Series_Reversion( x*(1-x+x^3) ).

A370838 Expansion of (1/x) * Series_Reversion( x/(x+1/(1+x^4)) ).

Original entry on oeis.org

1, 1, 1, 1, 0, -4, -14, -34, -64, -80, 16, 496, 1946, 5266, 10830, 14886, -884, -92564, -390404, -1113380, -2405649, -3529749, -360799, 20509101, 91770476, 271807476, 608858576, 941203576, 243522996, -4977842140, -23564569004, -72054072364, -166314098964
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serreverse(x/(x+1/(1+x^4)))/x)
    
  • PARI
    a(n) = sum(k=0, n\4, (-1)^k*binomial(n, 4*k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} (-1)^k * binomial(n,4*k) * binomial(5*k,k)/(4*k+1).
Showing 1-3 of 3 results.