A370882 Square array T(n,k) = 9*2^k - n read by ascending antidiagonals.
9, 8, 18, 7, 17, 36, 6, 16, 35, 72, 5, 15, 34, 71, 144, 4, 14, 33, 70, 143, 288, 3, 13, 32, 69, 142, 287, 576, 2, 12, 31, 68, 141, 286, 575, 1152, 1, 11, 30, 67, 140, 285, 574, 1151, 2304, 0, 10, 29, 66, 139, 284, 573, 1150, 2303, 4608, -1, 9, 28, 65, 138, 283, 572, 1149, 2302, 4607, 9216
Offset: 0
Examples
Table begins: k=0 1 2 3 4 5 n=0: 9 18 36 72 144 288 ... n=1: 8 17 35 71 143 287 ... n=2: 7 16 34 70 142 286 ... n=3: 6 15 33 69 141 285 ... n=4: 5 14 32 68 140 284 ... n=5: 4 13 31 67 139 283 ... Every line has the signature (3,-2). For n=1: 3*17 - 2*8 = 35. Main diagonal's difference table: 9 17 34 69 140 283 570 1145 ... = b(n) 8 17 35 71 143 287 575 1151 ... = A052996(n+2) 9 18 36 72 144 288 576 1152 ... = A005010(n) ... b(n+1) - 2*b(n) = A023443(n).
Crossrefs
Programs
-
Mathematica
T[n_, k_] := 9*2^k - n; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
Formula
T(0,k) = 9*2^k = A005010(k);
T(1,k) = 9*2^k - 1 = A052996(k+2);
T(2,k) = 9*2^k - 2 = A176449(k);
T(3,k) = 9*2^k - 3 = 3*A083329(k);
T(4,k) = 9*2^k - 4 = A053209(k);
T(5,k) = 9*2^k - 5 = A304383(k+3);
T(6,k) = 9*2^k - 6 = 3*A033484(k);
T(7,k) = 9*2^k - 7 = A154251(k+1);
T(8,k) = 9*2^k - 8 = A048491(k);
T(9,k) = 9*2^k - 9 = 3*A000225(k).
G.f.: (9 - 9*y + x*(11*y - 10))/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Mar 17 2024
Comments