cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A370905 Partial sums of the alternating sum of divisors function (A206369).

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 19, 24, 31, 35, 45, 51, 63, 69, 77, 88, 104, 111, 129, 141, 153, 163, 185, 195, 216, 228, 248, 266, 294, 302, 332, 353, 373, 389, 413, 434, 470, 488, 512, 532, 572, 584, 626, 656, 684, 706, 752, 774, 817, 838, 870, 906, 958, 978, 1018, 1048
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[beta[#] &, 100]]
  • PARI
    beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += beta(k); print1(s, ", "))};
    
  • PARI
    a(n) = sum(k=1, n, (-1)^bigomega(k) * (n\k) * (n\k+1))/2; \\ Daniel Suteu, May 11 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A370905(n): return sum(prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1),p+1)) for p, e in factorint(k).items()) for k in range(1,n+1)) # Chai Wah Wu, Mar 05 2024

Formula

a(n) = Sum_{k=1..n} A206369(k).
a(n) = (Pi^2/30) * n^2 + O(n * log(n)^(2/3) * log(log(n))^(4/3)) (Tóth, 2013).
a(n) = (1/2) * Sum_{k=1..n} A008836(k) * floor(n/k) * floor(n/k + 1). - Daniel Suteu, May 11 2024

A379619 Numerators of the partial sums of the reciprocals of the alternating sum of divisors function (A206369).

Original entry on oeis.org

1, 2, 5, 17, 37, 43, 15, 79, 573, 152, 311, 484, 657, 2041, 4187, 46897, 94949, 97589, 295847, 300467, 305087, 310631, 313151, 63739, 9181, 9313, 46961, 47401, 333787, 340717, 68513, 9863, 49711, 25103, 6317, 44549, 89483, 90253, 181661, 183047, 9187, 18605, 18671
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Examples

			Fractions begin with 1, 2, 5/2, 17/6, 37/12, 43/12, 15/4, 79/20, 573/140, 152/35, 311/70, 484/105, ...
		

Crossrefs

Cf. A206369, A370905, A370906, A379620 (denominators), A379621.

Programs

  • Mathematica
    f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/beta[n], {n, 1, 50}]]]
  • PARI
    beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / beta(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A206369(k)).
a(n)/A379620(n) = A * log(n) + B + O(n^(-1+eps)) for any eps > 0, where A and B are constants, A = Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/beta(p^k))) = 1.72360989673744398907... .

A379620 Denominators of the partial sums of the reciprocals of the alternating sum of divisors function (A206369).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 4, 20, 140, 35, 70, 105, 140, 420, 840, 9240, 18480, 18480, 55440, 55440, 55440, 55440, 55440, 11088, 1584, 1584, 7920, 7920, 55440, 55440, 11088, 1584, 7920, 3960, 990, 6930, 13860, 13860, 27720, 27720, 1386, 2772, 2772, 13860, 3465, 6930, 79695
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A206369, A370905, A370906, A379619 (numerators), A379622.

Programs

  • Mathematica
    f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/beta[n], {n, 1, 50}]]]
  • PARI
    beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / beta(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A206369(k)).

A379621 Numerators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).

Original entry on oeis.org

1, 0, 1, 1, 5, -1, 1, -7, 11, -47, -13, -61, -29, -157, -209, -3139, -5123, -1109, -2887, -3547, -2887, -3679, -3319, -4111, -26137, -30757, -5597, -2071, -277, -343, -1627, -12269, -2269, -625, -391, -1261, -3629, -3937, -1853, -4979, -19223, -21533, -20873, -21797
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Examples

			Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -7/60, 11/420, -47/210, -13/105, -61/210, ...
		

Crossrefs

Cf. A206369, A370905, A370906, A379619, A379622 (denominators).

Programs

  • Mathematica
    f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/beta[n], {n, 1, 50}]]]
  • PARI
    beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / beta(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A206369(k)).
a(n)/A379622(n) = A * log(n) + B + O(1/n^u), where u > 0, and A and B are constants.

A379622 Denominators of the partial alternating sums of the reciprocals of the alternating sum of divisors function (A206369).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 12, 60, 420, 210, 105, 210, 140, 420, 840, 9240, 18480, 2640, 7920, 7920, 7920, 7920, 7920, 7920, 55440, 55440, 11088, 3696, 528, 528, 2640, 18480, 3696, 924, 616, 1848, 5544, 5544, 2772, 6930, 27720, 27720, 27720, 27720, 27720, 27720, 637560
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A206369, A370905, A370906, A379620, A379621 (numerators).

Programs

  • Mathematica
    f[p_, e_] := Sum[(-1)^(e-k)*p^k, {k, 0, e}]; beta[1] = 1; beta[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/beta[n], {n, 1, 50}]]]
  • PARI
    beta(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; sum(k = 0, e, (-1)^(e-k)*p^k)); }
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / beta(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A206369(k)).
Showing 1-5 of 5 results.