A371033 a(n) is the integer whose binary expansion starts with 1 and such that the runs of identical bits have lengths n, n-1, n-2, ..., 3, 2, 1.
1, 6, 57, 966, 31801, 2065350, 266370105, 68453106630, 35115918982201, 35993681099981766, 73750982613738224697, 302157703921043555451846, 2475577920866839506242796601, 40562343629382474008388259775430, 1329187433441286490429798672020569145
Offset: 1
Examples
Representations as binary words (as in A371032) have decreasing runlengths: 1: 1 6: 110 57: 111001 966: 1111000110 (runlengths 4,3,2,1)
Programs
-
Maple
a:= n-> Bits[Join]([seq((1-(n-i) mod 2)$i, i=1..n)]): seq(a(n), n=1..15); # Alois P. Heinz, Jul 09 2024
-
Mathematica
Map[FromDigits[#, 2] &, Table[Flatten[Map[ConstantArray[Mod[#, 2], n + 1 - #] &, Range[n]]], {n, 16}]] (* Peter J. C. Moses, Mar 08 2024 *)
-
Python
def A371033(n): c = 0 for i in range(n): c <<= n-i if i&1^1: c += (1<
Chai Wah Wu, Mar 18 2024
Formula
a(n) == n (mod 2). - Alois P. Heinz, Jul 09 2024
a(n) = 2^(n*(n+1)/2) - 1 - a(n-1). - Robert Israel, Jul 09 2024
Extensions
New name from Michel Marcus, Jul 09 2024
a(15) corrected by Alois P. Heinz, Jul 09 2024